LiquidCache 使用教程
2025-04-20 11:19:47作者:秋阔奎Evelyn
1. 项目介绍
LiquidCache 是一个为 DataFusion 系统设计的 S3 缓存解决方案。它通过一个优化器规则,能够将成本和延迟降低高达 10 倍。LiquidCache 不是透明的缓存(可以考虑使用 Foyer),它利用查询语义来优化缓存。LiquidCache 将 S3 数据(如 JSON、CSV、Parquet)转码为内部格式,这种格式更加压缩,更适合 NVMe 存储,且对 DataFusion 操作更高效。
2. 项目快速启动
以下是快速启动 LiquidCache 的步骤:
首先,确保你已经安装了 Rust 编译环境和 Cargo 包管理工具。
启动 Cache Server
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
let liquid_cache = LiquidCacheService::new(
SessionContext::new(),
Some(1024 * 1024 * 1024), // 最大内存缓存大小 1GB
Some(tempfile::tempdir()?),
// 磁盘缓存目录
);
let flight = FlightServiceServer::new(liquid_cache);
Server::builder()
.add_service(flight)
.serve("0.0.0.0:50051".parse()?)
.await?
;
Ok(())
}
或者,你可以使用预构建的 Docker 镜像:
docker run -p 50051:50051 -v ~/liquid_cache:/cache \
ghcr.io/xiangpenghao/liquid-cache/liquid-cache-server:latest \
/app/bench_server --address 0.0.0.0:50051 --disk-cache-dir /cache
连接到缓存服务器
在你的 DataFusion 项目中添加以下依赖:
[dependencies]
liquid-cache-client = "0.1.0"
然后,创建一个新的 DataFusion 上下文,并连接到 LiquidCache:
#[tokio::main]
pub async fn main() -> Result<(), Box<dyn std::error::Error>> {
/*==========================LiquidCache============================*/
let ctx = LiquidCacheBuilder::new(cache_server)
.with_object_store(ObjectStoreUrl::parse(object_store_url.as_str())?, None)
.with_cache_mode(CacheMode::Liquid)
.build(SessionConfig::from_env()?);
/*=================================================================*/
let ctx: Arc<SessionContext> = Arc::new(ctx);
ctx.register_table(table_name, ..).await?;
ctx.sql(&sql).await?.show().await?;
Ok(())
}
3. 应用案例和最佳实践
社区服务器
LiquidCache 在 Xiangpeng 的 NAS 上运行了一个社区服务器,地址为 https://hex.tail0766e4.ts.net:50051
(使用风险自负)。你可以通过运行以下命令来尝试它:
cargo run --bin example_client --release -- \
--cache-server https://hex.tail0766e4.ts.net:50051 \
--file "https://huggingface.co/datasets/HuggingFaceFW/fineweb/resolve/main/data/CC-MAIN-2024-51/000_00042.parquet" \
--query "SELECT COUNT(*) FROM \"000_00042\" WHERE \"token_count\" < 100"
运行 ClickBench
-
设置仓库
git clone https://github.com/XiangpengHao/liquid-cache.git cd liquid-cache
-
运行 LiquidCache 服务器
cargo run --bin bench_server --release
-
在另一个终端运行 ClickBench 客户端
cargo run --bin clickbench_client --release -- --query-path benchmark/clickbench/queries.sql --file examples/nano_hits.parquet
注意:替换
nano_hits.parquet
为实际的 ClickBench 数据集以进行完整的基准测试。
4. 典型生态项目
目前,LiquidCache 主要与 DataFusion 配合使用,但也可以与其他数据分析和查询引擎集成。它的开源性质鼓励社区贡献和扩展,以支持更多的项目和用例。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0267cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
144
1.93 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
274

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
930
553

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
422
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
65

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8