Langchain-Chatchat API 接口调用问题解析与解决方案
2025-05-04 21:10:11作者:虞亚竹Luna
在使用Langchain-Chatchat项目进行API调用时,开发者可能会遇到接口调用错误的问题。本文将对这一问题进行深入分析,并提供正确的调用方法。
问题背景
在Langchain-Chatchat项目的API文档中,存在接口描述不一致的情况。特别是/chat/chat对话接口,其示例请求数据可能缺少必要字段,导致调用失败。后台错误信息不够明确,给开发者调试带来困难。
接口变更说明
最新版本的Langchain-Chatchat已经废弃了/chat/chat接口,转而使用新的接口设计。开发者应当注意以下两点:
- 旧接口/chat/chat已不再推荐使用
- 新接口/chat/chat/completions和/knowledge_base/chat/completions成为主要调用方式
正确调用方法
以下是使用Java语言调用新API接口的正确示例:
// 配置基本参数
MediaType JSON = MediaType.get("application/json; charset=utf-8");
String API_URL = "http://your-server-ip:port/chat/chat/completions";
String MODEL = "glm4_9b_chat";
// 构建HTTP客户端
OkHttpClient.Builder builder = new OkHttpClient.Builder();
builder.connectTimeout(10, TimeUnit.SECONDS);
builder.readTimeout(60, TimeUnit.SECONDS);
OkHttpClient client = builder.build();
// 构造请求体
JSONObject req = new JSONObject();
req.put("model", MODEL);
req.put("stream", false);
req.put("temperature", 0.7);
// 设置知识库查询参数
req.put("tool_choice", "search_local_knowledgebase");
JSONObject tool_input = new JSONObject();
tool_input.put("database", "samples"); // 对应本地知识库中的Database名称
tool_input.put("query", input);
req.put("tool_input", tool_input);
// 设置对话消息
JSONArray msgs = new JSONArray();
JSONObject msg = new JSONObject();
msg.put("role", "user");
msg.put("content", input);
msgs.add(msg);
req.put("messages", msgs);
// 发送请求
RequestBody body = RequestBody.create(req.toString(), JSON);
Request request = new Request.Builder().url(API_URL).post(body).build();
关键参数说明
- model:指定使用的语言模型,如glm4_9b_chat
- stream:是否启用流式响应
- temperature:控制生成文本的随机性
- tool_choice:指定使用的工具,如search_local_knowledgebase
- database:指定查询的本地知识库名称
- messages:对话历史记录,包含角色和内容
最佳实践建议
- 始终使用最新的API文档作为参考
- 对于超时设置,建议根据实际网络状况调整
- 在开发阶段,可以先将stream设为false以便调试
- 对于知识库查询,确保database参数与已创建的知识库名称一致
- 合理设置temperature值,平衡生成结果的创造性和准确性
通过遵循以上指导,开发者可以避免常见的API调用错误,更高效地集成Langchain-Chatchat的功能到自己的应用中。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
775
192
Ascend Extension for PyTorch
Python
343
407
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
250