Langchain-Chatchat API 接口调用问题解析与解决方案
2025-05-04 11:55:03作者:虞亚竹Luna
在使用Langchain-Chatchat项目进行API调用时,开发者可能会遇到接口调用错误的问题。本文将对这一问题进行深入分析,并提供正确的调用方法。
问题背景
在Langchain-Chatchat项目的API文档中,存在接口描述不一致的情况。特别是/chat/chat对话接口,其示例请求数据可能缺少必要字段,导致调用失败。后台错误信息不够明确,给开发者调试带来困难。
接口变更说明
最新版本的Langchain-Chatchat已经废弃了/chat/chat接口,转而使用新的接口设计。开发者应当注意以下两点:
- 旧接口/chat/chat已不再推荐使用
- 新接口/chat/chat/completions和/knowledge_base/chat/completions成为主要调用方式
正确调用方法
以下是使用Java语言调用新API接口的正确示例:
// 配置基本参数
MediaType JSON = MediaType.get("application/json; charset=utf-8");
String API_URL = "http://your-server-ip:port/chat/chat/completions";
String MODEL = "glm4_9b_chat";
// 构建HTTP客户端
OkHttpClient.Builder builder = new OkHttpClient.Builder();
builder.connectTimeout(10, TimeUnit.SECONDS);
builder.readTimeout(60, TimeUnit.SECONDS);
OkHttpClient client = builder.build();
// 构造请求体
JSONObject req = new JSONObject();
req.put("model", MODEL);
req.put("stream", false);
req.put("temperature", 0.7);
// 设置知识库查询参数
req.put("tool_choice", "search_local_knowledgebase");
JSONObject tool_input = new JSONObject();
tool_input.put("database", "samples"); // 对应本地知识库中的Database名称
tool_input.put("query", input);
req.put("tool_input", tool_input);
// 设置对话消息
JSONArray msgs = new JSONArray();
JSONObject msg = new JSONObject();
msg.put("role", "user");
msg.put("content", input);
msgs.add(msg);
req.put("messages", msgs);
// 发送请求
RequestBody body = RequestBody.create(req.toString(), JSON);
Request request = new Request.Builder().url(API_URL).post(body).build();
关键参数说明
- model:指定使用的语言模型,如glm4_9b_chat
- stream:是否启用流式响应
- temperature:控制生成文本的随机性
- tool_choice:指定使用的工具,如search_local_knowledgebase
- database:指定查询的本地知识库名称
- messages:对话历史记录,包含角色和内容
最佳实践建议
- 始终使用最新的API文档作为参考
- 对于超时设置,建议根据实际网络状况调整
- 在开发阶段,可以先将stream设为false以便调试
- 对于知识库查询,确保database参数与已创建的知识库名称一致
- 合理设置temperature值,平衡生成结果的创造性和准确性
通过遵循以上指导,开发者可以避免常见的API调用错误,更高效地集成Langchain-Chatchat的功能到自己的应用中。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C028
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
424
3.25 K
Ascend Extension for PyTorch
Python
231
263
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
331
暂无简介
Dart
686
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
仓颉编译器源码及 cjdb 调试工具。
C++
136
869