Langchain-Chatchat API 接口调用问题解析与解决方案
2025-05-04 21:10:11作者:虞亚竹Luna
在使用Langchain-Chatchat项目进行API调用时,开发者可能会遇到接口调用错误的问题。本文将对这一问题进行深入分析,并提供正确的调用方法。
问题背景
在Langchain-Chatchat项目的API文档中,存在接口描述不一致的情况。特别是/chat/chat对话接口,其示例请求数据可能缺少必要字段,导致调用失败。后台错误信息不够明确,给开发者调试带来困难。
接口变更说明
最新版本的Langchain-Chatchat已经废弃了/chat/chat接口,转而使用新的接口设计。开发者应当注意以下两点:
- 旧接口/chat/chat已不再推荐使用
- 新接口/chat/chat/completions和/knowledge_base/chat/completions成为主要调用方式
正确调用方法
以下是使用Java语言调用新API接口的正确示例:
// 配置基本参数
MediaType JSON = MediaType.get("application/json; charset=utf-8");
String API_URL = "http://your-server-ip:port/chat/chat/completions";
String MODEL = "glm4_9b_chat";
// 构建HTTP客户端
OkHttpClient.Builder builder = new OkHttpClient.Builder();
builder.connectTimeout(10, TimeUnit.SECONDS);
builder.readTimeout(60, TimeUnit.SECONDS);
OkHttpClient client = builder.build();
// 构造请求体
JSONObject req = new JSONObject();
req.put("model", MODEL);
req.put("stream", false);
req.put("temperature", 0.7);
// 设置知识库查询参数
req.put("tool_choice", "search_local_knowledgebase");
JSONObject tool_input = new JSONObject();
tool_input.put("database", "samples"); // 对应本地知识库中的Database名称
tool_input.put("query", input);
req.put("tool_input", tool_input);
// 设置对话消息
JSONArray msgs = new JSONArray();
JSONObject msg = new JSONObject();
msg.put("role", "user");
msg.put("content", input);
msgs.add(msg);
req.put("messages", msgs);
// 发送请求
RequestBody body = RequestBody.create(req.toString(), JSON);
Request request = new Request.Builder().url(API_URL).post(body).build();
关键参数说明
- model:指定使用的语言模型,如glm4_9b_chat
- stream:是否启用流式响应
- temperature:控制生成文本的随机性
- tool_choice:指定使用的工具,如search_local_knowledgebase
- database:指定查询的本地知识库名称
- messages:对话历史记录,包含角色和内容
最佳实践建议
- 始终使用最新的API文档作为参考
- 对于超时设置,建议根据实际网络状况调整
- 在开发阶段,可以先将stream设为false以便调试
- 对于知识库查询,确保database参数与已创建的知识库名称一致
- 合理设置temperature值,平衡生成结果的创造性和准确性
通过遵循以上指导,开发者可以避免常见的API调用错误,更高效地集成Langchain-Chatchat的功能到自己的应用中。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
328
387
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
136