在Transcrypt项目中创建模块并编写自动化测试的最佳实践
模块化开发概述
在Python和Transcrypt项目中,模块化开发是提高代码可维护性和复用性的关键。模块可以理解为包含Python代码的文件,它能够定义函数、类和变量,也可以包含可执行的代码。
创建Transcrypt模块的正确方式
要在Transcrypt中创建一个新模块,比如名为enum_new的模块,需要遵循以下步骤:
-
创建模块目录结构: 在
transcrypt/modules/目录下创建新的模块文件夹enum_new,并在其中创建__init__.py文件。这个文件可以空着,但必须存在,它告诉Python这个目录应该被视为一个Python包。 -
编写模块代码: 在
enum_new目录中创建Python文件(如my_enum.py),定义你的MyEnum类。确保代码符合Python和Transcrypt的规范。 -
导出模块内容: 在
__init__.py中,你可以选择性地导出模块中的特定内容,例如:from .my_enum import MyEnum
编写自动化测试的完整流程
为Transcrypt模块编写自动化测试需要特别注意测试环境的搭建:
-
创建测试目录: 在
transcrypt/development/automated_tests/transcrypt/下创建测试目录,如module_enum。 -
初始化测试环境: 在测试目录中同样需要
__init__.py文件。这个文件应该导入你要测试的模块内容,并定义测试用例。 -
编写测试用例: 在测试文件中,使用Transcrypt提供的
autoTester工具来验证模块功能。例如:from ..modules.enum_new import MyEnum def run(): # 测试代码 autoTester.check(MyEnum.some_method()) -
注册测试模块: 在
automated_tests/transcrypt/autotest.py中,添加对新测试模块的引用:import module_enum autoTester.run(module_enum, 'module_enum')
常见问题解决方案
-
模块导入错误: 确保所有相关目录都有
__init__.py文件,并且Python能够找到模块路径。可以通过检查sys.path或使用相对导入来解决。 -
测试不执行: 确认测试模块已在
autotest.py中正确注册,并且测试函数被autoTester.run调用。 -
跨模块引用问题: 在Transcrypt中,建议使用相对导入(如
from ..modules.enum_new import MyEnum)来避免路径问题。
最佳实践建议
- 保持模块功能的单一性,每个模块专注于解决一个特定问题
- 为每个模块编写详细的文档字符串
- 测试覆盖率应该尽可能高,特别是对于核心功能
- 在开发过程中频繁运行自动化测试
- 考虑模块的浏览器兼容性,因为Transcrypt会将代码编译为JavaScript
通过遵循这些步骤和最佳实践,你可以在Transcrypt项目中有效地创建模块并为其编写可靠的自动化测试,确保代码质量和可维护性。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00