Zenoh项目中的序列化优化:移除zenoh-ext中的Timestamp和Encoding类型
2025-07-08 04:52:13作者:裘晴惠Vivianne
在分布式系统开发中,数据序列化是一个核心组件,它直接影响着系统的性能和可维护性。最近,Zenoh项目团队对其序列化机制进行了一项重要优化——移除了zenoh-ext模块中对Timestamp和Encoding类型的序列化支持。这一变更看似微小,实则反映了Zenoh团队对插件系统设计的深入思考。
背景与动机
Zenoh作为一个高效的通信中间件,其插件系统需要处理各种数据类型的序列化和反序列化。最初,Timestamp(时间戳)和Encoding(编码)这两种类型的序列化被放置在zenoh-ext模块中,主要是为了方便插件使用。
然而,随着系统演进,团队发现这种设计存在两个关键问题:
- 性能考虑:对于编码插件而言,使用内部编码表示比通用序列化更加高效
- 架构清晰性:特定后端的序列化逻辑更适合放在各自的后端实现中,而不是放在通用的zenoh-ext模块
技术细节
Timestamp和Encoding是Zenoh中两个重要的数据类型:
- Timestamp:用于标记数据的时间信息,确保数据的有序性和时效性
- Encoding:定义了数据的编码格式,影响数据的解析方式
原先这些类型的序列化逻辑放在zenoh-ext中,导致:
- 插件被迫使用不够高效的通用序列化方式
- 后端实现与序列化逻辑分离,增加了维护复杂度
变更影响
这项优化主要影响三个方面:
- 插件开发:插件现在需要自行处理这些类型的序列化,但获得了更大的灵活性
- 后端实现:各后端(如文件系统后端、RocksDB后端)需要实现自己的序列化逻辑
- 系统性能:通过更贴近具体实现的序列化方式,提高了整体效率
架构意义
这一变更体现了Zenoh团队对系统架构的持续优化:
- 关注点分离:将通用功能与具体实现分离,使架构更加清晰
- 性能优先:允许特定场景使用最优化的序列化方式,而非强制通用方案
- 可维护性:相关逻辑靠近使用它的代码,降低了理解和修改的难度
开发者建议
对于基于Zenoh开发的工程师,需要注意:
- 如果开发插件,现在需要自行处理Timestamp和Encoding的序列化
- 升级时需要检查是否依赖了zenoh-ext中的这些序列化功能
- 可以考虑为特定场景实现定制化的高效序列化方案
这项变更是Zenoh持续优化的一部分,反映了团队对性能、架构清晰度和开发者体验的不懈追求。通过这样的精细化调整,Zenoh正变得越来越高效和易于使用。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~055CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0380- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
179
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
871
515

openGauss kernel ~ openGauss is an open source relational database management system
C++
131
184

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
346
380

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
334
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
31
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0

deepin linux kernel
C
22
5

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
829
22

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
603
58