Zenoh项目中的序列化优化:移除zenoh-ext中的Timestamp和Encoding类型
2025-07-08 14:13:26作者:裘晴惠Vivianne
在分布式系统开发中,数据序列化是一个核心组件,它直接影响着系统的性能和可维护性。最近,Zenoh项目团队对其序列化机制进行了一项重要优化——移除了zenoh-ext模块中对Timestamp和Encoding类型的序列化支持。这一变更看似微小,实则反映了Zenoh团队对插件系统设计的深入思考。
背景与动机
Zenoh作为一个高效的通信中间件,其插件系统需要处理各种数据类型的序列化和反序列化。最初,Timestamp(时间戳)和Encoding(编码)这两种类型的序列化被放置在zenoh-ext模块中,主要是为了方便插件使用。
然而,随着系统演进,团队发现这种设计存在两个关键问题:
- 性能考虑:对于编码插件而言,使用内部编码表示比通用序列化更加高效
- 架构清晰性:特定后端的序列化逻辑更适合放在各自的后端实现中,而不是放在通用的zenoh-ext模块
技术细节
Timestamp和Encoding是Zenoh中两个重要的数据类型:
- Timestamp:用于标记数据的时间信息,确保数据的有序性和时效性
- Encoding:定义了数据的编码格式,影响数据的解析方式
原先这些类型的序列化逻辑放在zenoh-ext中,导致:
- 插件被迫使用不够高效的通用序列化方式
- 后端实现与序列化逻辑分离,增加了维护复杂度
变更影响
这项优化主要影响三个方面:
- 插件开发:插件现在需要自行处理这些类型的序列化,但获得了更大的灵活性
- 后端实现:各后端(如文件系统后端、RocksDB后端)需要实现自己的序列化逻辑
- 系统性能:通过更贴近具体实现的序列化方式,提高了整体效率
架构意义
这一变更体现了Zenoh团队对系统架构的持续优化:
- 关注点分离:将通用功能与具体实现分离,使架构更加清晰
- 性能优先:允许特定场景使用最优化的序列化方式,而非强制通用方案
- 可维护性:相关逻辑靠近使用它的代码,降低了理解和修改的难度
开发者建议
对于基于Zenoh开发的工程师,需要注意:
- 如果开发插件,现在需要自行处理Timestamp和Encoding的序列化
- 升级时需要检查是否依赖了zenoh-ext中的这些序列化功能
- 可以考虑为特定场景实现定制化的高效序列化方案
这项变更是Zenoh持续优化的一部分,反映了团队对性能、架构清晰度和开发者体验的不懈追求。通过这样的精细化调整,Zenoh正变得越来越高效和易于使用。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134