VisActor/VTable 1.17.7版本发布:表格组件功能增强与问题修复
VisActor/VTable是一款功能强大的开源表格组件库,专注于提供高性能、可定制化的数据表格展示方案。该组件支持多种表格类型,包括基础表格、透视表等,并提供了丰富的交互功能和可视化能力。在最新发布的1.17.7版本中,VTable团队带来了一系列功能增强和问题修复,进一步提升了组件的稳定性和用户体验。
核心功能增强
图表图片缓存前事件支持
新版本增加了onBeforeCacheChartImage事件,允许开发者在图表图片被缓存前进行自定义操作。这一功能特别适用于需要对图表进行特殊处理或优化的场景,开发者可以在此事件中修改图表配置或添加额外信息,然后再进行缓存。
自定义配置支持禁用内置图表激活
通过新增的customConfig.disableBuildInChartActive配置项,开发者现在可以灵活控制是否禁用内置的图表激活功能。这为那些需要完全自定义图表交互行为的应用场景提供了更大的灵活性。
动态更新选择区域大小配置
在主题配置的selectionStyle中新增了dynamicUpdateSelectionSize选项,使得选择区域的大小可以根据内容动态调整。这一改进使得表格的选择交互更加智能和自然,提升了用户体验。
问题修复与优化
-
表格尺寸计算修正:修复了
getCellsRect()方法中表格尺寸计算不准确的问题,确保了获取单元格矩形区域的准确性。 -
行列序号配置下的列索引计算:修正了当配置了
rowSeriesNumber时列索引计算错误的问题,保证了在复杂配置下表格数据的正确展示。 -
图片闪烁问题解决:优化了图片加载机制,解决了在某些情况下图片显示时出现闪烁的问题,提升了视觉体验。
-
文本贴靠行列更新问题:修复了在文本贴靠模式下行列更新时可能出现的问题,确保了数据更新的稳定性。
-
开关默认方向修正:调整了开关组件的默认方向设置,使其更符合用户预期。
技术实现细节
在图表图片缓存方面,新版本采用了更加灵活的预处理机制。开发者可以通过onBeforeCacheChartImage事件对即将缓存的图表进行最后调整,这为实现复杂的图表定制提供了可能。事件回调中可以获得图表实例和当前配置,开发者可以根据需要修改这些参数。
对于选择区域的动态更新,新版本在渲染引擎中增加了智能检测机制。当dynamicUpdateSelectionSize启用时,系统会自动监测内容变化并调整选择框大小,这一改进显著提升了交互的自然度。
在性能优化方面,团队针对图片加载进行了深度优化。通过改进缓存策略和加载时序,有效减少了图片闪烁现象。同时,对表格核心计算逻辑的调整也提升了整体性能,特别是在处理大型数据集时更为明显。
升级建议
对于正在使用VTable的项目,建议评估新功能是否适用于当前场景。特别是那些需要高度定制化图表交互或对选择区域有特殊需求的项目,可以考虑升级以利用这些新特性。
升级时需要注意配置项的变更,特别是新增的customConfig.disableBuildInChartActive和theme.selectionStyle.dynamicUpdateSelectionSize选项,需要根据实际需求进行设置。
对于遇到图片闪烁或选择区域问题的项目,强烈建议升级到此版本以获得更稳定的表现。团队对核心功能的持续优化确保了升级过程通常是平滑的,但仍建议在测试环境中先行验证。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00