使用ggplot2进行数据可视化艺术创作:基础到进阶技巧
2025-07-07 08:18:25作者:郁楠烈Hubert
前言
ggplot2是R语言中最强大的数据可视化工具之一,它基于"图形语法"理论,提供了一套系统化的方法来构建统计图形。本文将通过实际案例,从基础到进阶,逐步介绍如何使用ggplot2创建精美的数据可视化作品。
准备工作
首先需要加载必要的R包:
library(tidyverse) # 包含ggplot2及其他数据处理工具
library(sf) # 空间数据处理
library(ggfortify) # 增强ggplot2的自动化绘图功能
基础绘图
简单散点图
让我们从最基本的散点图开始,使用内置的swiss数据集:
ggplot(data = swiss, aes(x = Agriculture, y = Fertility)) +
geom_point()
这段代码创建了一个展示瑞士各省农业人口比例与生育率关系的散点图。ggplot()函数初始化图形,aes()定义美学映射,geom_point()添加点图层。
保存图形
创建好的图形可以保存为图片或R对象:
gg <- last_plot() # 获取最后创建的图形
ggsave("out/test.png", plot = gg) # 保存为PNG
save(gg, file = "out/gg_swiss.rda") # 保存为R对象
线图与路径图
使用airquality数据集展示温度随时间的变化:
df_aq <- airquality |>
janitor::clean_names() |>
mutate(
date = paste(day, month, "1973", sep = "-") |> lubridate::dmy(),
month = month |> factor()
)
# 基本线图
ggplot(df_aq) +
geom_line(aes(x = date, y = temp))
geom_line()和geom_path()的区别在于前者按x轴排序连接点,后者按数据原始顺序连接。
分面技术
分面(Faceting)可以将数据按分类变量拆分为多个子图:
df_aq |>
ggplot(aes(wind, temp, color = month)) +
geom_point() +
facet_wrap(~ factor(month), ncol = 3)
这段代码创建了按月份分面的风速-温度散点图矩阵,每列显示3个月的数据。
统计变换
ggplot2内置了多种统计变换功能:
# 添加平滑曲线
gg + stat_smooth()
# 线性回归线
gg + stat_smooth(method = "lm")
# 带椭圆的分组散点图
swiss |>
ggplot(aes(x = Agriculture, y = Fertility, color = Catholic > 50)) +
geom_point() +
stat_ellipse()
高级图形类型
密度图和经验累积分布图
# 密度图
df_aq |>
ggplot() +
geom_density(aes(x = temp, color = month), size = 1) +
scale_color_viridis_d(option = "D", end = .8)
# 经验累积分布图
df_aq |>
ggplot() +
stat_ecdf(aes(x = temp, color = month), size = 1) +
scale_color_viridis_d(option = "B", end = .8)
箱线图和小提琴图
# 箱线图
df_aq |>
ggplot() +
geom_boxplot(aes(x = month, y = temp))
# 小提琴图
df_aq |>
ggplot() +
geom_violin(aes(x = month, y = temp, fill = month))
# 抖动点图
df_aq |>
ggplot() +
geom_jitter(aes(x = month, y = temp, color = month), width = .2)
组合图形
将箱线图与抖动点图结合可以同时展示分布特征和原始数据:
df_aq |>
ggplot(aes(x = month, y = temp)) +
geom_boxplot(width = 0.3, outlier.shape = NA) +
geom_jitter(width = 0.1, alpha = 0.5)
结语
ggplot2的强大之处在于它的层次化语法和高度可定制性。通过组合不同的几何对象、统计变换和分面技术,可以创建几乎任何类型的数据可视化作品。掌握这些基础技巧后,你就可以开始探索更高级的主题,如主题定制、交互式图形和动画等。
记住,优秀的数据可视化不仅是技术实现,更是艺术表达。不断练习和探索,你将能够创造出既有信息量又美观的图形作品。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
650
149
Ascend Extension for PyTorch
Python
211
221
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
655
291
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
250
319
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
486
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
640
仓颉编程语言运行时与标准库。
Cangjie
136
874
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
216