WikipediaQL 开源项目最佳实践教程
2025-05-17 07:47:21作者:董斯意
1. 项目介绍
WikipediaQL 是一个实验性的查询语言和 Python 库,用于从 Wikipedia 中查询结构化数据。它通过解析 Wikipedia 的页面内容,允许用户使用类似于 CSS 选择器的语法来提取信息,从而使得 Wikipedia 的数据可以被机器更容易地访问和处理。
2. 项目快速启动
首先,确保你已经安装了 Python 环境。以下是快速启动 WikipediaQL 的步骤:
# 安装 WikipediaQL
pip install wikipedia_ql
# 使用 WikipediaQL 查询页面数据
wikipedia_ql --page "Page name" 'section[heading="Section Title"] >> selector'
例如,如果你想查询 "Guardians of the Galaxy (film)" 页面上的演员列表,你可以运行以下命令:
wikipedia_ql --page "Guardians of the Galaxy (film)" \
'section[heading="Cast"] >> li >> {
text:matches("^(.+?) as (.+?):") >> {
text-group[group=1] as "actor";
text-group[group=2] as "character"
}
}'
这将输出该电影的演员和角色信息。
3. 应用案例和最佳实践
案例一:提取电影评分
以下是一个提取电影评分的示例:
wikipedia_ql --page "Guardians of the Galaxy (film)" \
'section[heading="Critical response"] >> {
sentence:contains("Rotten Tomatoes") as "RT ratings" >> {
text:matches("\d+%") as "percent";
text:matches("(\d+) (critic|review)") >> text-group[group=1] as "reviews";
text:matches("[\d.]+/10") as "overall"
}
}'
案例二:提取专辑信息
wikipedia_ql --page "Pink Floyd" \
'section[heading="Discography"] >> li >> {
a as "title";
text:matches("\((.+)\)") >> text-group[group=1] as "year";
}'
最佳实践
- 在编写查询时,尽量保持语法的简洁和清晰。
- 使用缓存机制来提高查询效率,尤其是在处理大量数据时。
- 对于复杂查询,可以将其拆分为多个简单的查询,逐步提取所需信息。
4. 典型生态项目
目前,WikipediaQL 还是一个相对较新的项目,其生态系统还在不断发展中。以下是一些可能的生态项目:
- 一个图形用户界面(GUI)工具,用于可视化查询结果。
- 一个更强大的查询语言解析器,支持更多的查询特性和优化。
- 集成其他数据源,如 Wikidata,以提供更全面的数据查询功能。
通过遵循这些最佳实践,开发者可以更有效地使用 WikipediaQL 来从 Wikipedia 提取结构化数据。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
480
3.57 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
暂无简介
Dart
731
176
React Native鸿蒙化仓库
JavaScript
289
341
Ascend Extension for PyTorch
Python
290
322
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
仓颉编程语言运行时与标准库。
Cangjie
149
885
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
452