WikipediaQL 开源项目最佳实践教程
2025-05-17 03:55:52作者:董斯意
1. 项目介绍
WikipediaQL 是一个实验性的查询语言和 Python 库,用于从 Wikipedia 中查询结构化数据。它通过解析 Wikipedia 的页面内容,允许用户使用类似于 CSS 选择器的语法来提取信息,从而使得 Wikipedia 的数据可以被机器更容易地访问和处理。
2. 项目快速启动
首先,确保你已经安装了 Python 环境。以下是快速启动 WikipediaQL 的步骤:
# 安装 WikipediaQL
pip install wikipedia_ql
# 使用 WikipediaQL 查询页面数据
wikipedia_ql --page "Page name" 'section[heading="Section Title"] >> selector'
例如,如果你想查询 "Guardians of the Galaxy (film)" 页面上的演员列表,你可以运行以下命令:
wikipedia_ql --page "Guardians of the Galaxy (film)" \
'section[heading="Cast"] >> li >> {
text:matches("^(.+?) as (.+?):") >> {
text-group[group=1] as "actor";
text-group[group=2] as "character"
}
}'
这将输出该电影的演员和角色信息。
3. 应用案例和最佳实践
案例一:提取电影评分
以下是一个提取电影评分的示例:
wikipedia_ql --page "Guardians of the Galaxy (film)" \
'section[heading="Critical response"] >> {
sentence:contains("Rotten Tomatoes") as "RT ratings" >> {
text:matches("\d+%") as "percent";
text:matches("(\d+) (critic|review)") >> text-group[group=1] as "reviews";
text:matches("[\d.]+/10") as "overall"
}
}'
案例二:提取专辑信息
wikipedia_ql --page "Pink Floyd" \
'section[heading="Discography"] >> li >> {
a as "title";
text:matches("\((.+)\)") >> text-group[group=1] as "year";
}'
最佳实践
- 在编写查询时,尽量保持语法的简洁和清晰。
- 使用缓存机制来提高查询效率,尤其是在处理大量数据时。
- 对于复杂查询,可以将其拆分为多个简单的查询,逐步提取所需信息。
4. 典型生态项目
目前,WikipediaQL 还是一个相对较新的项目,其生态系统还在不断发展中。以下是一些可能的生态项目:
- 一个图形用户界面(GUI)工具,用于可视化查询结果。
- 一个更强大的查询语言解析器,支持更多的查询特性和优化。
- 集成其他数据源,如 Wikidata,以提供更全面的数据查询功能。
通过遵循这些最佳实践,开发者可以更有效地使用 WikipediaQL 来从 Wikipedia 提取结构化数据。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 Jetson TX2开发板官方资源完全指南:从入门到精通 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
311
2.72 K
deepin linux kernel
C
24
7
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
638
242
仓颉编译器源码及 cjdb 调试工具。
C++
124
851
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
469
Ascend Extension for PyTorch
Python
148
175
暂无简介
Dart
604
135
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
226
81
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
363
2.99 K
React Native鸿蒙化仓库
JavaScript
236
310