WikipediaQL 开源项目最佳实践教程
2025-05-17 17:13:31作者:董斯意
1. 项目介绍
WikipediaQL 是一个实验性的查询语言和 Python 库,用于从 Wikipedia 中查询结构化数据。它通过解析 Wikipedia 的页面内容,允许用户使用类似于 CSS 选择器的语法来提取信息,从而使得 Wikipedia 的数据可以被机器更容易地访问和处理。
2. 项目快速启动
首先,确保你已经安装了 Python 环境。以下是快速启动 WikipediaQL 的步骤:
# 安装 WikipediaQL
pip install wikipedia_ql
# 使用 WikipediaQL 查询页面数据
wikipedia_ql --page "Page name" 'section[heading="Section Title"] >> selector'
例如,如果你想查询 "Guardians of the Galaxy (film)" 页面上的演员列表,你可以运行以下命令:
wikipedia_ql --page "Guardians of the Galaxy (film)" \
'section[heading="Cast"] >> li >> {
text:matches("^(.+?) as (.+?):") >> {
text-group[group=1] as "actor";
text-group[group=2] as "character"
}
}'
这将输出该电影的演员和角色信息。
3. 应用案例和最佳实践
案例一:提取电影评分
以下是一个提取电影评分的示例:
wikipedia_ql --page "Guardians of the Galaxy (film)" \
'section[heading="Critical response"] >> {
sentence:contains("Rotten Tomatoes") as "RT ratings" >> {
text:matches("\d+%") as "percent";
text:matches("(\d+) (critic|review)") >> text-group[group=1] as "reviews";
text:matches("[\d.]+/10") as "overall"
}
}'
案例二:提取专辑信息
wikipedia_ql --page "Pink Floyd" \
'section[heading="Discography"] >> li >> {
a as "title";
text:matches("\((.+)\)") >> text-group[group=1] as "year";
}'
最佳实践
- 在编写查询时,尽量保持语法的简洁和清晰。
- 使用缓存机制来提高查询效率,尤其是在处理大量数据时。
- 对于复杂查询,可以将其拆分为多个简单的查询,逐步提取所需信息。
4. 典型生态项目
目前,WikipediaQL 还是一个相对较新的项目,其生态系统还在不断发展中。以下是一些可能的生态项目:
- 一个图形用户界面(GUI)工具,用于可视化查询结果。
- 一个更强大的查询语言解析器,支持更多的查询特性和优化。
- 集成其他数据源,如 Wikidata,以提供更全面的数据查询功能。
通过遵循这些最佳实践,开发者可以更有效地使用 WikipediaQL 来从 Wikipedia 提取结构化数据。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178