OpenCompass项目中CMB数据集评估问题的分析与解决
OpenCompass作为一个开源的大模型评估框架,在评估过程中可能会遇到各种数据集兼容性问题。本文针对用户在使用OpenCompass评估CMB数据集时遇到的报错进行技术分析,并提供解决方案。
问题现象
用户在尝试使用OpenCompass评估Qwen1.5-0.5B-Chat模型在CMB数据集上的表现时,遇到了关键错误:"Column answer not in the dataset"。错误信息表明,评估程序试图访问数据集中名为"answer"的列,但实际数据集结构中并不存在这一列。
技术分析
-
错误根源:该问题源于数据集读取逻辑与数据集实际结构不匹配。评估代码期望在CMB数据集中找到一个名为"answer"的列用于评估,但实际数据集包含的是其他字段,如'id'、'exam_type'、'question'等。
-
评估流程:OpenCompass的评估流程中,OpenICLInferTask会通过ds_reader读取数据集,并尝试获取output_column指定的列作为标准答案进行比对。在本案例中,output_column被设置为"answer",但数据集没有这一列。
-
数据集结构:从错误信息可以看出,CMB数据集实际包含以下字段:
- id
- exam_type
- exam_class
- exam_subject
- question
- question_type
- option
- option_str
解决方案
该问题已在OpenCompass项目的最新更新中得到修复。修复方案主要包括:
-
数据集配置调整:修改了CMB数据集的配置文件,使其与实际数据集结构保持一致。
-
评估逻辑优化:更新了评估代码,使其能够正确处理CMB数据集的特定结构。
-
兼容性增强:增加了对数据集字段的检查机制,避免类似问题再次发生。
实施建议
对于遇到类似问题的用户,建议:
-
更新到OpenCompass的最新版本,该版本已包含对此问题的修复。
-
如果无法立即更新,可以手动修改本地配置文件,将output_column调整为数据集中实际存在的列名。
-
在使用自定义数据集时,确保评估配置中的字段名称与数据集实际结构完全匹配。
总结
数据集兼容性问题是评估框架开发中的常见挑战。OpenCompass团队通过快速响应和修复,展示了项目对用户体验的重视。对于评估框架的使用者来说,理解数据集结构与评估配置的关系至关重要,这有助于快速定位和解决类似问题。
随着大模型评估需求的增长,评估框架与各种数据集的兼容性将变得越来越重要。OpenCompass通过持续优化,正在为社区提供一个更加稳定、可靠的评估平台。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00