MAIF/melusine项目教程:基于零样本分类的客户不满情绪检测
2025-06-02 02:11:14作者:温玫谨Lighthearted
概述
本教程将介绍如何使用MAIF/melusine框架构建一个客户不满情绪检测系统。该系统利用预训练语言模型和零样本分类技术,能够自动识别客户邮件或消息中表达的不满情绪,无需大量标注数据进行模型训练。
技术背景
零样本分类(Zero-shot classification)是一种自然语言处理技术,它允许模型在没有特定任务训练数据的情况下进行分类。这种方法特别适合业务场景快速部署,因为不需要收集和标注大量特定领域的数据。
实现步骤
1. 创建测试数据集
首先我们需要准备一个简单的测试数据集,包含客户消息的标题和正文:
def create_dataset():
df = pd.DataFrame(
[
{
"header": "Dossier 123456",
"body": "Merci beaucoup pour votre gentillesse et votre écoute !",
},
{
"header": "Réclamation (Dossier 987654)",
"body": "Bonjour, je ne suis pas satisfait de cette situation, répondez-moi rapidement svp!",
},
]
)
return df
这个数据集包含两条消息:一条表达感谢(正面情绪),另一条表达不满(负面情绪)。
2. 构建不满情绪检测器
我们创建一个继承自MelusineDetector
的自定义检测器类:
class DissatisfactionDetector(MelusineDetector):
"""
检测文本是否表达不满情绪
"""
# 定义输出列名
OUTPUT_RESULT_COLUMN = "dissatisfaction_result"
TMP_DETECTION_INPUT_COLUMN = "detection_input"
TMP_DETECTION_OUTPUT_COLUMN = "detection_output"
# 模型推理参数
POSITIVE_LABEL = "positif"
NEGATIVE_LABEL = "négatif"
HYPOTHESIS_TEMPLATE = "Ce texte est {}."
3. 实现检测流程
检测过程分为三个阶段:
预处理阶段(pre_detect)
将多个文本列合并为一个输入文本:
def pre_detect(self, row, debug_mode=False):
effective_text = ""
for col in self.text_columns:
effective_text += "\n" + row[col]
row[self.TMP_DETECTION_INPUT_COLUMN] = effective_text
return row
检测阶段(detect)
使用零样本分类模型进行情绪分析:
def detect(self, row, debug_mode=False):
pipeline_result = self.classifier(
sequences=row[self.TMP_DETECTION_INPUT_COLUMN],
candidate_labels=", ".join([self.POSITIVE_LABEL, self.NEGATIVE_LABEL]),
hypothesis_template=self.HYPOTHESIS_TEMPLATE,
)
result_dict = dict(zip(pipeline_result["labels"], pipeline_result["scores"]))
row[self.TMP_DETECTION_OUTPUT_COLUMN] = result_dict
return row
后处理阶段(post_detect)
根据阈值判断是否为不满情绪:
def post_detect(self, row, debug_mode=False):
if row[self.TMP_DETECTION_OUTPUT_COLUMN][self.NEGATIVE_LABEL] > self.threshold:
row[self.OUTPUT_RESULT_COLUMN] = True
else:
row[self.OUTPUT_RESULT_COLUMN] = False
return row
4. 运行检测器
最后,我们初始化检测器并应用于数据集:
def run():
df = create_dataset()
detector = DissatisfactionDetector(
model_name_or_path="cmarkea/distilcamembert-base-nli",
text_columns=["header", "body"],
threshold=0.7,
)
df = detector.transform(df)
return df
技术要点
-
零样本分类模型:使用
distilcamembert-base-nli
模型,这是一个基于CamemBERT的轻量级法语自然语言推理模型。 -
阈值设置:通过调整阈值(threshold)可以控制检测的严格程度,值越高表示对不满情绪的判定越严格。
-
多文本列处理:可以同时处理多个文本列(如标题和正文),将它们合并后进行分析。
-
调试模式:支持调试模式,可以查看中间处理结果。
应用场景
这种不满情绪检测系统可以应用于:
- 客户服务自动化处理
- 社交媒体舆情监控
- 产品反馈分析
- 服务质量评估
总结
本教程展示了如何使用MAIF/melusine框架构建一个基于零样本分类的情绪检测系统。这种方法无需大量标注数据即可实现业务需求,特别适合快速部署和迭代。通过调整模型和阈值参数,可以灵活适应不同的业务场景和需求。
登录后查看全文
热门项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0113AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 WebVideoDownloader:高效网页视频抓取工具全面使用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
217
2.23 K

暂无简介
Dart
523
116

React Native鸿蒙化仓库
JavaScript
210
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
982
580

Ascend Extension for PyTorch
Python
67
97

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
564
87

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
33
0