MAIF/melusine项目教程:基于零样本分类的客户不满情绪检测
2025-06-02 01:22:28作者:温玫谨Lighthearted
概述
本教程将介绍如何使用MAIF/melusine框架构建一个客户不满情绪检测系统。该系统利用预训练语言模型和零样本分类技术,能够自动识别客户邮件或消息中表达的不满情绪,无需大量标注数据进行模型训练。
技术背景
零样本分类(Zero-shot classification)是一种自然语言处理技术,它允许模型在没有特定任务训练数据的情况下进行分类。这种方法特别适合业务场景快速部署,因为不需要收集和标注大量特定领域的数据。
实现步骤
1. 创建测试数据集
首先我们需要准备一个简单的测试数据集,包含客户消息的标题和正文:
def create_dataset():
df = pd.DataFrame(
[
{
"header": "Dossier 123456",
"body": "Merci beaucoup pour votre gentillesse et votre écoute !",
},
{
"header": "Réclamation (Dossier 987654)",
"body": "Bonjour, je ne suis pas satisfait de cette situation, répondez-moi rapidement svp!",
},
]
)
return df
这个数据集包含两条消息:一条表达感谢(正面情绪),另一条表达不满(负面情绪)。
2. 构建不满情绪检测器
我们创建一个继承自MelusineDetector的自定义检测器类:
class DissatisfactionDetector(MelusineDetector):
"""
检测文本是否表达不满情绪
"""
# 定义输出列名
OUTPUT_RESULT_COLUMN = "dissatisfaction_result"
TMP_DETECTION_INPUT_COLUMN = "detection_input"
TMP_DETECTION_OUTPUT_COLUMN = "detection_output"
# 模型推理参数
POSITIVE_LABEL = "positif"
NEGATIVE_LABEL = "négatif"
HYPOTHESIS_TEMPLATE = "Ce texte est {}."
3. 实现检测流程
检测过程分为三个阶段:
预处理阶段(pre_detect)
将多个文本列合并为一个输入文本:
def pre_detect(self, row, debug_mode=False):
effective_text = ""
for col in self.text_columns:
effective_text += "\n" + row[col]
row[self.TMP_DETECTION_INPUT_COLUMN] = effective_text
return row
检测阶段(detect)
使用零样本分类模型进行情绪分析:
def detect(self, row, debug_mode=False):
pipeline_result = self.classifier(
sequences=row[self.TMP_DETECTION_INPUT_COLUMN],
candidate_labels=", ".join([self.POSITIVE_LABEL, self.NEGATIVE_LABEL]),
hypothesis_template=self.HYPOTHESIS_TEMPLATE,
)
result_dict = dict(zip(pipeline_result["labels"], pipeline_result["scores"]))
row[self.TMP_DETECTION_OUTPUT_COLUMN] = result_dict
return row
后处理阶段(post_detect)
根据阈值判断是否为不满情绪:
def post_detect(self, row, debug_mode=False):
if row[self.TMP_DETECTION_OUTPUT_COLUMN][self.NEGATIVE_LABEL] > self.threshold:
row[self.OUTPUT_RESULT_COLUMN] = True
else:
row[self.OUTPUT_RESULT_COLUMN] = False
return row
4. 运行检测器
最后,我们初始化检测器并应用于数据集:
def run():
df = create_dataset()
detector = DissatisfactionDetector(
model_name_or_path="cmarkea/distilcamembert-base-nli",
text_columns=["header", "body"],
threshold=0.7,
)
df = detector.transform(df)
return df
技术要点
-
零样本分类模型:使用
distilcamembert-base-nli模型,这是一个基于CamemBERT的轻量级法语自然语言推理模型。 -
阈值设置:通过调整阈值(threshold)可以控制检测的严格程度,值越高表示对不满情绪的判定越严格。
-
多文本列处理:可以同时处理多个文本列(如标题和正文),将它们合并后进行分析。
-
调试模式:支持调试模式,可以查看中间处理结果。
应用场景
这种不满情绪检测系统可以应用于:
- 客户服务自动化处理
- 社交媒体舆情监控
- 产品反馈分析
- 服务质量评估
总结
本教程展示了如何使用MAIF/melusine框架构建一个基于零样本分类的情绪检测系统。这种方法无需大量标注数据即可实现业务需求,特别适合快速部署和迭代。通过调整模型和阈值参数,可以灵活适应不同的业务场景和需求。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
474
3.54 K
React Native鸿蒙化仓库
JavaScript
287
339
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
92
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
723
175
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
701
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19