MAIF/melusine项目教程:基于零样本分类的客户不满情绪检测
2025-06-02 10:27:26作者:温玫谨Lighthearted
概述
本教程将介绍如何使用MAIF/melusine框架构建一个客户不满情绪检测系统。该系统利用预训练语言模型和零样本分类技术,能够自动识别客户邮件或消息中表达的不满情绪,无需大量标注数据进行模型训练。
技术背景
零样本分类(Zero-shot classification)是一种自然语言处理技术,它允许模型在没有特定任务训练数据的情况下进行分类。这种方法特别适合业务场景快速部署,因为不需要收集和标注大量特定领域的数据。
实现步骤
1. 创建测试数据集
首先我们需要准备一个简单的测试数据集,包含客户消息的标题和正文:
def create_dataset():
df = pd.DataFrame(
[
{
"header": "Dossier 123456",
"body": "Merci beaucoup pour votre gentillesse et votre écoute !",
},
{
"header": "Réclamation (Dossier 987654)",
"body": "Bonjour, je ne suis pas satisfait de cette situation, répondez-moi rapidement svp!",
},
]
)
return df
这个数据集包含两条消息:一条表达感谢(正面情绪),另一条表达不满(负面情绪)。
2. 构建不满情绪检测器
我们创建一个继承自MelusineDetector的自定义检测器类:
class DissatisfactionDetector(MelusineDetector):
"""
检测文本是否表达不满情绪
"""
# 定义输出列名
OUTPUT_RESULT_COLUMN = "dissatisfaction_result"
TMP_DETECTION_INPUT_COLUMN = "detection_input"
TMP_DETECTION_OUTPUT_COLUMN = "detection_output"
# 模型推理参数
POSITIVE_LABEL = "positif"
NEGATIVE_LABEL = "négatif"
HYPOTHESIS_TEMPLATE = "Ce texte est {}."
3. 实现检测流程
检测过程分为三个阶段:
预处理阶段(pre_detect)
将多个文本列合并为一个输入文本:
def pre_detect(self, row, debug_mode=False):
effective_text = ""
for col in self.text_columns:
effective_text += "\n" + row[col]
row[self.TMP_DETECTION_INPUT_COLUMN] = effective_text
return row
检测阶段(detect)
使用零样本分类模型进行情绪分析:
def detect(self, row, debug_mode=False):
pipeline_result = self.classifier(
sequences=row[self.TMP_DETECTION_INPUT_COLUMN],
candidate_labels=", ".join([self.POSITIVE_LABEL, self.NEGATIVE_LABEL]),
hypothesis_template=self.HYPOTHESIS_TEMPLATE,
)
result_dict = dict(zip(pipeline_result["labels"], pipeline_result["scores"]))
row[self.TMP_DETECTION_OUTPUT_COLUMN] = result_dict
return row
后处理阶段(post_detect)
根据阈值判断是否为不满情绪:
def post_detect(self, row, debug_mode=False):
if row[self.TMP_DETECTION_OUTPUT_COLUMN][self.NEGATIVE_LABEL] > self.threshold:
row[self.OUTPUT_RESULT_COLUMN] = True
else:
row[self.OUTPUT_RESULT_COLUMN] = False
return row
4. 运行检测器
最后,我们初始化检测器并应用于数据集:
def run():
df = create_dataset()
detector = DissatisfactionDetector(
model_name_or_path="cmarkea/distilcamembert-base-nli",
text_columns=["header", "body"],
threshold=0.7,
)
df = detector.transform(df)
return df
技术要点
-
零样本分类模型:使用
distilcamembert-base-nli模型,这是一个基于CamemBERT的轻量级法语自然语言推理模型。 -
阈值设置:通过调整阈值(threshold)可以控制检测的严格程度,值越高表示对不满情绪的判定越严格。
-
多文本列处理:可以同时处理多个文本列(如标题和正文),将它们合并后进行分析。
-
调试模式:支持调试模式,可以查看中间处理结果。
应用场景
这种不满情绪检测系统可以应用于:
- 客户服务自动化处理
- 社交媒体舆情监控
- 产品反馈分析
- 服务质量评估
总结
本教程展示了如何使用MAIF/melusine框架构建一个基于零样本分类的情绪检测系统。这种方法无需大量标注数据即可实现业务需求,特别适合快速部署和迭代。通过调整模型和阈值参数,可以灵活适应不同的业务场景和需求。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python02
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
Launch4j中文版:Java应用程序打包成EXE的终极解决方案 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
288
2.59 K
deepin linux kernel
C
24
7
React Native鸿蒙化仓库
JavaScript
225
304
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
604
181
暂无简介
Dart
575
127
Ascend Extension for PyTorch
Python
114
144
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.04 K
609
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
450
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
46
75
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
136
57