MAIF/melusine项目教程:基于零样本分类的客户不满情绪检测
2025-06-02 00:21:59作者:温玫谨Lighthearted
概述
本教程将介绍如何使用MAIF/melusine框架构建一个客户不满情绪检测系统。该系统利用预训练语言模型和零样本分类技术,能够自动识别客户邮件或消息中表达的不满情绪,无需大量标注数据进行模型训练。
技术背景
零样本分类(Zero-shot classification)是一种自然语言处理技术,它允许模型在没有特定任务训练数据的情况下进行分类。这种方法特别适合业务场景快速部署,因为不需要收集和标注大量特定领域的数据。
实现步骤
1. 创建测试数据集
首先我们需要准备一个简单的测试数据集,包含客户消息的标题和正文:
def create_dataset():
df = pd.DataFrame(
[
{
"header": "Dossier 123456",
"body": "Merci beaucoup pour votre gentillesse et votre écoute !",
},
{
"header": "Réclamation (Dossier 987654)",
"body": "Bonjour, je ne suis pas satisfait de cette situation, répondez-moi rapidement svp!",
},
]
)
return df
这个数据集包含两条消息:一条表达感谢(正面情绪),另一条表达不满(负面情绪)。
2. 构建不满情绪检测器
我们创建一个继承自MelusineDetector
的自定义检测器类:
class DissatisfactionDetector(MelusineDetector):
"""
检测文本是否表达不满情绪
"""
# 定义输出列名
OUTPUT_RESULT_COLUMN = "dissatisfaction_result"
TMP_DETECTION_INPUT_COLUMN = "detection_input"
TMP_DETECTION_OUTPUT_COLUMN = "detection_output"
# 模型推理参数
POSITIVE_LABEL = "positif"
NEGATIVE_LABEL = "négatif"
HYPOTHESIS_TEMPLATE = "Ce texte est {}."
3. 实现检测流程
检测过程分为三个阶段:
预处理阶段(pre_detect)
将多个文本列合并为一个输入文本:
def pre_detect(self, row, debug_mode=False):
effective_text = ""
for col in self.text_columns:
effective_text += "\n" + row[col]
row[self.TMP_DETECTION_INPUT_COLUMN] = effective_text
return row
检测阶段(detect)
使用零样本分类模型进行情绪分析:
def detect(self, row, debug_mode=False):
pipeline_result = self.classifier(
sequences=row[self.TMP_DETECTION_INPUT_COLUMN],
candidate_labels=", ".join([self.POSITIVE_LABEL, self.NEGATIVE_LABEL]),
hypothesis_template=self.HYPOTHESIS_TEMPLATE,
)
result_dict = dict(zip(pipeline_result["labels"], pipeline_result["scores"]))
row[self.TMP_DETECTION_OUTPUT_COLUMN] = result_dict
return row
后处理阶段(post_detect)
根据阈值判断是否为不满情绪:
def post_detect(self, row, debug_mode=False):
if row[self.TMP_DETECTION_OUTPUT_COLUMN][self.NEGATIVE_LABEL] > self.threshold:
row[self.OUTPUT_RESULT_COLUMN] = True
else:
row[self.OUTPUT_RESULT_COLUMN] = False
return row
4. 运行检测器
最后,我们初始化检测器并应用于数据集:
def run():
df = create_dataset()
detector = DissatisfactionDetector(
model_name_or_path="cmarkea/distilcamembert-base-nli",
text_columns=["header", "body"],
threshold=0.7,
)
df = detector.transform(df)
return df
技术要点
-
零样本分类模型:使用
distilcamembert-base-nli
模型,这是一个基于CamemBERT的轻量级法语自然语言推理模型。 -
阈值设置:通过调整阈值(threshold)可以控制检测的严格程度,值越高表示对不满情绪的判定越严格。
-
多文本列处理:可以同时处理多个文本列(如标题和正文),将它们合并后进行分析。
-
调试模式:支持调试模式,可以查看中间处理结果。
应用场景
这种不满情绪检测系统可以应用于:
- 客户服务自动化处理
- 社交媒体舆情监控
- 产品反馈分析
- 服务质量评估
总结
本教程展示了如何使用MAIF/melusine框架构建一个基于零样本分类的情绪检测系统。这种方法无需大量标注数据即可实现业务需求,特别适合快速部署和迭代。通过调整模型和阈值参数,可以灵活适应不同的业务场景和需求。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0267cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp课程视频测验中的Tab键导航问题解析2 freeCodeCamp音乐播放器项目中的函数调用问题解析3 freeCodeCamp论坛排行榜项目中的错误日志规范要求4 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析5 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析6 freeCodeCamp全栈开发课程中React实验项目的分类修正7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析9 freeCodeCamp课程页面空白问题的技术分析与解决方案10 freeCodeCamp博客页面工作坊中的断言方法优化建议
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
144
1.93 K

deepin linux kernel
C
22
6

React Native鸿蒙化仓库
C++
192
274

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
930
553

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
423
392

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
64
511