首页
/ 探索无限可能:onnx-tool —— 强大的ONNX模型编辑与优化工具

探索无限可能:onnx-tool —— 强大的ONNX模型编辑与优化工具

2024-05-21 23:41:41作者:幸俭卉

项目介绍

onnx-tool 是一款强大的ONNX模型处理库,它提供了对ONNX模型的解析、编辑、分析以及优化功能。无论是折叠常量层、融合运算符,还是进行形状推理与内存压缩,onnx-tool都能轻松应对,帮助开发者在深度学习模型部署中实现更高的效率和性能。

项目技术分析

模型解析与编辑

利用onnx-tool提供的Python API,你可以将ONNX模型转化为易编辑的形式,通过onnx_tool.Model, onnx_tool.Graphonnx_tool.Node 进行灵活操作。对模型进行任何细微改动后,只需简单调用save_model即可保存更改至新的ONNX文件。

形状推理与模型分析

onnx-tool集成了高效的形状推理算法,能够准确预测模型在不同输入尺寸下的行为。此外,它还能统计每个操作符的MACs(Multiply-Accumulate Operations),以及内存占用和参数数量,为模型优化提供关键数据。

计算图与形状引擎

该工具的独特之处在于其计算图与形状引擎的分离设计,使模型仅关注计算过程,而形状更新则由独立的引擎负责。这极大地简化了模型推理引擎的设计。

运算符融合

onnx-tool支持多OP融合,如Transformer中的MHA与Layernorm融合,以及Resnet18等模型的优化,显著减少了模型的复杂性,提高了运行速度。

子模型提取

该工具允许用户从大型模型中提取子模型,以实现模型并行,有效提高大规模模型的处理能力。

内存压缩

针对LLM和高分辨率CV模型,onnx-tool实现了激活Tensor的高效压缩,能在不影响精度的前提下,显著减少内存使用。

应用场景

onnx-tool广泛应用于各种领域的模型,包括但不限于NLP(BERT, T5, GPT, LLaMa, MPT)、扩散模型(Stable Diffusion)、计算机视觉(Detic, BEVFormer, SSD300_VGG16)以及音频处理(sovits, LPCNet)。无论是在边缘设备上的实时推理,还是云端服务器的大规模模型训练,onnx-tool都是你不可或缺的工具。

项目特点

  1. 灵活性 - 提供丰富API,支持模型的深度编辑与定制。
  2. 全面性 - 支持多种模型类型,涵盖多个领域。
  3. 效率 - 功能强大且高效的形状推理和运算符融合功能。
  4. 直观 - 图形化展示模型结构和优化结果,便于理解与调试。
  5. 轻量级 - 易于安装和集成,适用于多种环境。

想要提升你的ONNX模型性能,试试onnx-tool吧!通过pip install onnx-tool或直接从GitHub获取最新代码,让模型优化变得简单又高效。现在就开始探索吧!

热门项目推荐
相关项目推荐

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
825
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
8
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicmsanqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5