Artillery测试工具中场景步骤被忽略的问题分析与解决
2025-05-27 10:15:33作者:韦蓉瑛
问题现象
在使用Artillery进行API性能测试时,开发者遇到了一个奇怪的现象:测试脚本中部分步骤被意外跳过。具体表现为:
- 脚本中定义的
think等待步骤未执行 - 后续的日志打印和POST请求步骤也被忽略
- 测试日志仅显示"Create a foo"信息,后续步骤无任何输出
- 虽然POST请求确实发送成功(数据库中有记录),但测试流程却中断了
根本原因分析
经过深入排查,发现问题根源在于Artillery的capture机制。当测试脚本中包含capture步骤时,Artillery默认会以严格模式(strict mode)运行,这意味着:
- 如果
capture操作失败(例如无法从响应中提取指定字段) - 或者服务器响应不符合预期格式
- 测试引擎会立即终止当前虚拟用户(VU)的执行流程
这种设计是合理的,因为如果关键数据提取失败,后续依赖该数据的测试步骤很可能无法正常工作。
解决方案
针对这类问题,Artillery提供了多种调试和解决方法:
调试方法
-
启用响应调试:通过设置环境变量
DEBUG=http:response,可以打印完整的HTTP响应信息,帮助确认服务器返回的实际内容。 -
捕获完整响应:修改capture配置,捕获整个响应体而非特定字段:
capture:
json: "$" # 捕获完整JSON响应
as: full_response
- 日志验证:在关键步骤后添加日志输出,验证变量是否成功捕获:
- log: "foo_id: {{ foo_id }}"
配置调整
- 关闭严格捕获模式:如果确定要跳过捕获失败继续执行后续步骤,可以设置:
capture:
json: '$.id'
as: 'foo_id'
strict: false # 关闭严格模式
- 异常处理:考虑在测试脚本中添加错误处理逻辑,确保关键步骤失败时有适当的fallback方案。
最佳实践建议
-
逐步验证:开发测试脚本时,建议先验证基础流程,再逐步添加复杂逻辑。
-
响应验证:在关键请求后,添加响应状态码和内容的验证步骤。
-
日志策略:合理使用日志输出,特别是在变量捕获和流程转折点处。
-
环境隔离:在性能测试前,先确保功能测试通过,排除基础API问题。
-
监控机制:结合Artillery的插件系统,添加自定义监控和报警逻辑。
总结
Artillery作为一款强大的性能测试工具,其严格的数据捕获机制虽然可能导致测试中断,但这种设计实际上有助于及早发现问题。开发者应当理解这一机制,并通过合理的调试方法和配置调整来确保测试流程的完整执行。同时,建立完善的测试验证体系,才能充分发挥性能测试的价值,为系统稳定性提供可靠保障。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
615
140
Ascend Extension for PyTorch
Python
167
187
React Native鸿蒙化仓库
JavaScript
240
315
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
255
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.18 K
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
618
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
261
92