Azurite 开发中 SAS 令牌生成与访问问题的解决方案
问题背景
在使用 Azurite 进行 Azure Blob Storage 本地开发时,许多开发者会遇到 SAS (Shared Access Signature) 令牌生成后无法正常访问 Blob 资源的问题。具体表现为当尝试使用生成的 SAS URL 访问 Blob 时,系统返回 InvalidResourceName 错误,提示资源名称包含无效字符。
问题分析
通过深入分析,我们发现这个问题主要源于 SAS URL 的构造方式不正确。在本地开发环境中使用 Azurite 时,URL 的构造与生产环境有所不同,需要特别注意以下几点:
-
存储账户名称必须包含在 URL 路径中:与生产环境不同,Azurite 要求显式地在 URL 路径中包含存储账户名称(默认为
devstoreaccount1)。 -
端口号必须明确指定:Azurite 默认使用 10000 端口作为 Blob 服务端口,这个端口号必须显式包含在 URL 中。
-
协议和主机名:在本地开发环境中,通常使用
http协议和127.0.0.1或localhost作为主机名。
正确构造 SAS URL 的方法
以下是正确构造 SAS URL 的 Python 代码示例:
from datetime import datetime, timedelta
from azure.storage.blob import BlobSasPermissions, generate_blob_sas
# 生成 SAS 令牌
sas_token = generate_blob_sas(
account_name="devstoreaccount1",
container_name="testcontainer",
blob_name="testfile.txt",
account_key="Eby8vdM02xNOcqFlqUwJPLlmEtlCDXJ1OUzFT50uSRZ6IFsuFq2UVErCz4I6tq/K1SZFPTOtr/KBHBeksoGMGw==",
permission=BlobSasPermissions(read=True),
expiry=datetime.now() + timedelta(hours=1),
protocol="http",
start=datetime.now() - timedelta(minutes=10),
version="2020-02-10"
)
# 构造正确的 SAS URL
blob_service = "127.0.0.1:10000"
storage_account = "devstoreaccount1"
container = "testcontainer"
blob = "testfile.txt"
sas_url = f"http://{blob_service}/{storage_account}/{container}/{blob}?{sas_token}"
关键注意事项
-
存储账户名称:Azurite 默认使用
devstoreaccount1作为存储账户名称,必须包含在 URL 路径中。 -
端口号:Azurite 的 Blob 服务默认监听 10000 端口,Queue 服务监听 10001 端口,Table 服务监听 10002 端口。
-
协议:本地开发通常使用 HTTP 而非 HTTPS。
-
时间设置:确保令牌的生效时间(start)和过期时间(expiry)设置合理,且使用协调世界时(UTC)。
-
权限设置:根据实际需求设置适当的权限(如 read、write、delete 等)。
常见错误排查
-
错误信息:
InvalidResourceName- 通常表示 URL 构造不正确,缺少存储账户名称或使用了错误的路径结构。 -
错误信息:
AuthenticationFailed- 可能原因包括:- SAS 令牌已过期
- 权限不足
- 存储账户密钥不正确
-
连接问题:确保 Azurite 服务正在运行,并且应用程序配置了正确的连接字符串。
最佳实践建议
-
环境变量管理:将存储账户名称、密钥和端点信息存储在环境变量中,便于在不同环境间切换。
-
错误处理:在代码中添加适当的错误处理逻辑,捕获并记录 SAS 生成和访问过程中的异常。
-
日志记录:启用 Azurite 的调试日志(使用
--debug参数),便于排查问题。 -
版本控制:确保使用的 Azure SDK 版本与 Azurite 版本兼容。
通过遵循上述指导原则,开发者可以避免 SAS 令牌相关的常见问题,在本地开发环境中顺利使用 Azurite 进行 Azure Blob Storage 的功能开发和测试。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00