Apollo Kotlin 多风味构建中如何按需启用 GraphQL 代码生成
在 Android 多风味(Flavor)开发中,我们经常会遇到不同风味需要不同技术栈的场景。本文将以 Apollo Kotlin 为例,详细介绍如何在项目中实现仅针对特定风味启用 GraphQL 代码生成功能。
问题背景
假设我们有一个 Android 项目包含两种 API 连接方式:
rest风味:使用 Ktor 实现 REST APIgraphql风味:使用 Apollo Kotlin 实现 GraphQL API
我们希望只在 graphql 风味中启用 Apollo 的代码生成功能,而在 rest 风味中完全跳过这一步骤,以避免不必要的构建时间和依赖。
解决方案
1. 基础配置
首先在模块级 build.gradle.kts 中进行基本配置:
plugins {
alias(libs.plugins.apollo)
// 其他插件...
}
flavorDimensions += "apiType"
productFlavors {
create("rest") {
dimension = "apiType"
}
create("graphql") {
dimension = "apiType"
}
}
// 仅对 graphql 风味添加运行时依赖
"graphqlImplementation"(libs.apollo.runtime)
2. 关键配置:按风味连接代码生成
Apollo Kotlin 提供了 outputDirConnection 配置项,允许我们将生成的代码连接到特定的源集:
apollo {
service("service") {
packageNamesFromFilePaths()
srcDir("src/graphql/apollo")
generateKotlinModels.set(true)
outputDirConnection {
connectToAndroidSourceSet("graphql")
}
}
}
原理分析
这种配置方式利用了 Gradle 的任务依赖机制:
- 通过
connectToAndroidSourceSet("graphql")将生成的代码显式关联到graphql风味 - 构建系统会自动识别这种关联关系
- 当构建
rest风味时,Gradle 会跳过所有 Apollo 相关的代码生成任务 - 只有当构建
graphql风味时,才会执行完整的代码生成流程
进阶建议
-
目录结构优化:建议将 GraphQL 相关文件(如 .graphql 查询文件和 schema.json)放在
src/graphql/apollo目录下,保持清晰的代码结构 -
依赖管理:使用版本目录(version catalogs)管理 Apollo 相关依赖,确保版本一致性
-
构建性能:这种按风味连接的方式不仅能解决功能需求,还能显著提升
rest风味的构建速度
常见问题
Q: 为什么不能直接条件化应用插件? A: Gradle 插件应用是全局性的,无法在配置阶段根据风味条件化应用。我们的解决方案是在任务执行层面进行优化。
Q: 如果我有更多风味需要处理怎么办?
A: 同样的原理可以扩展到任意数量的风味,只需确保每个使用 Apollo 的风味都有对应的 connectToAndroidSourceSet 配置。
通过这种配置方式,我们实现了 Apollo Kotlin 在多风味项目中的精细化控制,既满足了不同风味的技术需求,又保持了构建系统的高效性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00