Apollo Kotlin 多风味构建中如何按需启用 GraphQL 代码生成
在 Android 多风味(Flavor)开发中,我们经常会遇到不同风味需要不同技术栈的场景。本文将以 Apollo Kotlin 为例,详细介绍如何在项目中实现仅针对特定风味启用 GraphQL 代码生成功能。
问题背景
假设我们有一个 Android 项目包含两种 API 连接方式:
rest
风味:使用 Ktor 实现 REST APIgraphql
风味:使用 Apollo Kotlin 实现 GraphQL API
我们希望只在 graphql
风味中启用 Apollo 的代码生成功能,而在 rest
风味中完全跳过这一步骤,以避免不必要的构建时间和依赖。
解决方案
1. 基础配置
首先在模块级 build.gradle.kts 中进行基本配置:
plugins {
alias(libs.plugins.apollo)
// 其他插件...
}
flavorDimensions += "apiType"
productFlavors {
create("rest") {
dimension = "apiType"
}
create("graphql") {
dimension = "apiType"
}
}
// 仅对 graphql 风味添加运行时依赖
"graphqlImplementation"(libs.apollo.runtime)
2. 关键配置:按风味连接代码生成
Apollo Kotlin 提供了 outputDirConnection
配置项,允许我们将生成的代码连接到特定的源集:
apollo {
service("service") {
packageNamesFromFilePaths()
srcDir("src/graphql/apollo")
generateKotlinModels.set(true)
outputDirConnection {
connectToAndroidSourceSet("graphql")
}
}
}
原理分析
这种配置方式利用了 Gradle 的任务依赖机制:
- 通过
connectToAndroidSourceSet("graphql")
将生成的代码显式关联到graphql
风味 - 构建系统会自动识别这种关联关系
- 当构建
rest
风味时,Gradle 会跳过所有 Apollo 相关的代码生成任务 - 只有当构建
graphql
风味时,才会执行完整的代码生成流程
进阶建议
-
目录结构优化:建议将 GraphQL 相关文件(如 .graphql 查询文件和 schema.json)放在
src/graphql/apollo
目录下,保持清晰的代码结构 -
依赖管理:使用版本目录(version catalogs)管理 Apollo 相关依赖,确保版本一致性
-
构建性能:这种按风味连接的方式不仅能解决功能需求,还能显著提升
rest
风味的构建速度
常见问题
Q: 为什么不能直接条件化应用插件? A: Gradle 插件应用是全局性的,无法在配置阶段根据风味条件化应用。我们的解决方案是在任务执行层面进行优化。
Q: 如果我有更多风味需要处理怎么办?
A: 同样的原理可以扩展到任意数量的风味,只需确保每个使用 Apollo 的风味都有对应的 connectToAndroidSourceSet
配置。
通过这种配置方式,我们实现了 Apollo Kotlin 在多风味项目中的精细化控制,既满足了不同风味的技术需求,又保持了构建系统的高效性。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









