Apollo Kotlin 多风味构建中如何按需启用 GraphQL 代码生成
在 Android 多风味(Flavor)开发中,我们经常会遇到不同风味需要不同技术栈的场景。本文将以 Apollo Kotlin 为例,详细介绍如何在项目中实现仅针对特定风味启用 GraphQL 代码生成功能。
问题背景
假设我们有一个 Android 项目包含两种 API 连接方式:
rest风味:使用 Ktor 实现 REST APIgraphql风味:使用 Apollo Kotlin 实现 GraphQL API
我们希望只在 graphql 风味中启用 Apollo 的代码生成功能,而在 rest 风味中完全跳过这一步骤,以避免不必要的构建时间和依赖。
解决方案
1. 基础配置
首先在模块级 build.gradle.kts 中进行基本配置:
plugins {
alias(libs.plugins.apollo)
// 其他插件...
}
flavorDimensions += "apiType"
productFlavors {
create("rest") {
dimension = "apiType"
}
create("graphql") {
dimension = "apiType"
}
}
// 仅对 graphql 风味添加运行时依赖
"graphqlImplementation"(libs.apollo.runtime)
2. 关键配置:按风味连接代码生成
Apollo Kotlin 提供了 outputDirConnection 配置项,允许我们将生成的代码连接到特定的源集:
apollo {
service("service") {
packageNamesFromFilePaths()
srcDir("src/graphql/apollo")
generateKotlinModels.set(true)
outputDirConnection {
connectToAndroidSourceSet("graphql")
}
}
}
原理分析
这种配置方式利用了 Gradle 的任务依赖机制:
- 通过
connectToAndroidSourceSet("graphql")将生成的代码显式关联到graphql风味 - 构建系统会自动识别这种关联关系
- 当构建
rest风味时,Gradle 会跳过所有 Apollo 相关的代码生成任务 - 只有当构建
graphql风味时,才会执行完整的代码生成流程
进阶建议
-
目录结构优化:建议将 GraphQL 相关文件(如 .graphql 查询文件和 schema.json)放在
src/graphql/apollo目录下,保持清晰的代码结构 -
依赖管理:使用版本目录(version catalogs)管理 Apollo 相关依赖,确保版本一致性
-
构建性能:这种按风味连接的方式不仅能解决功能需求,还能显著提升
rest风味的构建速度
常见问题
Q: 为什么不能直接条件化应用插件? A: Gradle 插件应用是全局性的,无法在配置阶段根据风味条件化应用。我们的解决方案是在任务执行层面进行优化。
Q: 如果我有更多风味需要处理怎么办?
A: 同样的原理可以扩展到任意数量的风味,只需确保每个使用 Apollo 的风味都有对应的 connectToAndroidSourceSet 配置。
通过这种配置方式,我们实现了 Apollo Kotlin 在多风味项目中的精细化控制,既满足了不同风味的技术需求,又保持了构建系统的高效性。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00