GFPose: 3D人体姿态学习与预测的最佳实践
2025-05-22 16:20:31作者:廉彬冶Miranda
1. 项目介绍
GFPose 是一个开源项目,基于 CVPR2023 论文《GFPose: Learning 3D Human Pose Prior with Gradient Fields》的官方实现。该项目致力于学习3D人体姿态先验,并能够在一个模型中执行五种下游任务,包括3D姿态估计、姿态补全、3D姿态生成、3D姿态去噪等。
2. 项目快速启动
在开始之前,确保您的环境中已安装以下依赖:
- Python 3.9 或更高版本
- PyTorch
- 3DPoseViewer(用于可视化)
安装依赖:
pip install -r requirements.txt
启动训练流程:
CUDA_VISIBLE_DEVICES=0 python -m run.train_fc_adv_3d --config configs/subvp/h36m_ncsnpp_deep_continuous.py --name u3d
上述命令将在单个GPU上启动U3D模型的训练。CUDA_VISIBLE_DEVICES 环境变量用于指定可用的GPU设备。
3. 应用案例和最佳实践
3.1 3D姿态估计
使用SDE采样200个假设进行评估:
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m run.eval_fc_mp_adv_3d --config configs/subvp/h36m_ncsnpp_deep_continuous.py --ckpt-dir checkpoint/u3d --best --sample 640 --gpus 4 --hypo 200 --save results est
使用概率流ODE采样单个假设进行评估:
CUDA_VISIBLE_DEVICES=0 python -m run.eval_fc_mp_adv_3d --config configs/subvp/h36m_ncsnpp_deep_continuous.py --ckpt-dir checkpoint/u3d --best --sample 640 --gpus 1 --hypo 1 --pflow --save trajs est
3.2 姿态补全(不完整的2D -> 3D)
评估时使用200个假设和2个随机选择的缺失关节:
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m run.eval_fc_mp_adv_3d --config configs/subvp/h36m_ncsnpp_deep_continuous.py --ckpt-dir checkpoint/u3d --best --sample 640 --gpus 4 --hypo 200 --save results comp2d --randj 2
也可以手动指定缺失的关节(例如,右腿):
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m run.eval_fc_mp_adv_3d --config configs/subvp/h36m_ncsnpp_deep_continuous.py --ckpt-dir checkpoint/u3d --best --sample 640 --gpus 4 --hypo 200 --save results comp2d --jlist 1,2,3
3.3 姿态补全(不完整的3D -> 3D)
评估时使用1个假设和3个随机选择的缺失关节:
CUDA_VISIBLE_DEVICES=0 python -m run.eval_fc_mp_adv_3d --config configs/subvp/h36m_ncsnpp_deep_continuous.py --ckpt-dir checkpoint/u3d --best --sample 640 --gpus 1 --hypo 1 --pflow --save trajs comp3d --randj 3
也可以手动指定缺失的关节(例如,两条腿):
CUDA_VISIBLE_DEVICES=0 python -m run.eval_fc_mp_adv_3d --config configs/subvp/h36m_ncsnpp_deep_continuous.py --ckpt-dir checkpoint/u3d --best --sample 640 --gpus 1 --hypo 1 --pflow --save trajs comp3d --jlist 1,2,3,4,5,6
3.4 3D姿态生成
CUDA_VISIBLE_DEVICES=0 python -m run.eval_fc_mp_adv_3d --config configs/subvp/h36m_ncsnpp_deep_continuous.py --ckpt-dir checkpoint/u3d --best --sample 640 --gpus 1 --hypo 1 --save trajs gen
3.5 3D姿态去噪
CUDA_VISIBLE_DEVICES=0 python -m run.denoise_fc_adv_3d --config configs/subvp/h36m_ncsnpp_deep_continuous.py --ckpt-dir checkpoint/u3d --best --save den --noise-type gaussian --std 5 --t 0.05
4. 典型生态项目
GFPose 可以作为3D人体姿态相关研究的基础框架,未来可以扩展到更多应用场景中,如虚拟现实、动画制作、人机交互等领域。此外,开源社区的贡献者可以在此基础上开发更多工具和插件,丰富整个生态。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
528
3.73 K
Ascend Extension for PyTorch
Python
336
401
暂无简介
Dart
768
191
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
883
590
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
172
React Native鸿蒙化仓库
JavaScript
302
353
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
750
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
246