PyGithub v2.6.0版本发布:全面增强GitHub API集成能力
项目简介
PyGithub是一个强大的Python库,它提供了对GitHub API的完整封装,让开发者能够以Pythonic的方式与GitHub进行交互。这个库简化了与GitHub API的集成工作,支持包括仓库管理、用户认证、团队协作等在内的各种GitHub功能。
重大变更
视图和克隆统计接口重构
在v2.6.0版本中,PyGithub对Repository.get_views_traffic
和Repository.get_clones_traffic
方法的返回值进行了重大重构。原先这些方法返回的是原始字典结构,现在则返回了专门的PyGithub对象,提供了更好的类型安全和IDE支持。
旧版代码需要从字典中获取数据:
repo.get_views_traffic()["views"].timestamp
repo.get_clones_traffic()["clones"].timestamp
新版代码可以直接访问对象属性:
repo.get_views_traffic().views.timestamp
repo.get_clones_traffic().clones.timestamp
属性名称修正
OrganizationCustomProperty
类中的respository_id
属性被重命名为正确的repository_id
,修正了拼写错误。
新功能亮点
全局延迟加载支持
新增了全局延迟加载功能,可以显著提升性能,特别是在处理大量数据时。这个功能允许开发者控制何时真正从GitHub获取数据,而不是在对象创建时就立即加载。
GitHub Copilot席位管理
新增了对GitHub Copilot席位管理的支持,组织管理员现在可以通过PyGithub管理Copilot的订阅和用户分配。
提交分支查询
添加了获取提交所在分支的功能,可以轻松找出哪些分支以特定提交作为头指针。
发布资源下载
现在支持直接下载Release中的资源文件,简化了自动化部署和资源获取流程。
上游仓库合并
新增了Repository.merge_upstream
方法,使得将上游仓库变更合并到派生仓库变得更加简单。
Pull Request草稿状态更新
支持更新Pull Request的草稿状态,便于在开发过程中管理PR的生命周期。
仓库所有权转移
新增了转移仓库所有权的方法,为组织架构调整提供了便利。
工作流启用/禁用
添加了启用和禁用工作流的功能,方便进行CI/CD流程的管理和控制。
代码安全配置管理
新增了对代码安全配置管理的支持,包括安全策略、依赖审查等功能的配置。
应用认证增强
在AppAuth中增加了对私钥和签名函数的支持,提供了更灵活的认证方式。
重要改进
速率限制对象更新
更新了RateLimit对象,包含了GitHub新增的所有速率限制类别,提供更全面的API调用监控。
创建发布标记增强
在create_git_release
和create_git_tag_and_release
方法中增加了make-latest
支持,可以指定新发布的版本是否为最新版本。
分支保护检查增强
增强了分支保护功能,支持required_status_checks.checks
对象,提供更精细的状态检查控制。
提交信息处理优化
现在使用simple-commit中的id和tree_id来填充GitCommit.sha和GitCommit.tree,提高了数据一致性。
错误信息处理
改进了GithubException中的错误信息处理,现在会使用响应中的完整错误信息,便于调试。
性能与稳定性
HTTP请求处理优化
修复了与最新urllib3版本的兼容性问题,确保了HTTP请求的稳定性。
内容获取重定向修复
修复了Repository.get_contents
方法中的重定向问题,提高了方法的可靠性。
类型注解增强
将NotSet
标记为Attribute[Any]
,提供了更好的类型提示支持。
测试与维护
测试框架升级
从httpretty迁移到responses作为测试框架,提高了测试的可靠性和维护性。
类属性排序
对所有GitHub类中的属性和方法进行了排序,提高了代码的可读性和一致性。
API模式注解
为所有GitHub类添加了API模式注解,便于开发者理解和使用。
总结
PyGithub v2.6.0版本带来了大量新功能和改进,特别是在API覆盖范围、类型安全和开发体验方面有了显著提升。这个版本不仅增加了对GitHub新功能的支持,还优化了现有功能的实现方式,使得Python开发者能够更高效、更可靠地与GitHub进行交互。无论是简单的仓库操作还是复杂的企业级集成,PyGithub v2.6.0都提供了强大的工具支持。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava02GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0287- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









