FlashRAG项目中的GPU使用配置解析
2025-07-03 20:52:09作者:丁柯新Fawn
在FlashRAG项目中,默认配置会使用GPU来加速处理过程,但在某些情况下,用户可能需要在不使用GPU的环境下运行代码。本文将详细介绍如何修改配置以实现纯CPU运行。
默认GPU配置分析
FlashRAG项目默认使用FastChatGenerator作为生成器,其配置中gpu_id通常设置为"0,1,2,3",这意味着会尝试使用多个GPU设备。在generator.py文件的第528行附近,代码逻辑主要处理两种GPU使用场景:单GPU和多GPU情况,但没有显式处理无GPU的情况。
切换到CPU运行的方法
要将FlashRAG配置为仅使用CPU运行,需要进行以下修改:
- 修改生成器类型:将框架从默认的FastChat改为Hugging Face的原生实现
- 调整GPU配置:将gpu_id参数显式设置为None
- 更新框架设置:将framework参数明确指定为'hf'
具体配置示例如下:
generator:
framework: hf
gpu_id: None
model_path: /path/to/your/model
技术实现原理
HFCausalLMGenerator是Hugging Face Transformers库的原生实现,相比FastChatGenerator具有更好的CPU兼容性。当gpu_id设置为None时,系统会自动检测并使用CPU进行计算。这种配置下,模型会完全运行在CPU上,不会尝试加载任何CUDA设备。
性能考虑
需要注意的是,纯CPU运行会带来显著的性能下降:
- 推理速度可能比GPU慢10-100倍
- 内存占用会更高
- 批处理大小可能需要减小
对于大型语言模型,建议至少使用中等性能的GPU以获得可接受的响应时间。如果必须使用CPU,可以考虑以下优化措施:
- 使用量化后的模型版本
- 减小max_length等生成长度参数
- 降低batch_size值
总结
FlashRAG项目提供了灵活的硬件配置选项,通过简单的参数调整即可在GPU和CPU环境间切换。理解这些配置选项可以帮助开发者根据实际硬件条件优化项目部署方案。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0113AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
218
2.23 K

暂无简介
Dart
523
116

React Native鸿蒙化仓库
JavaScript
210
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
982
580

Ascend Extension for PyTorch
Python
67
97

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
564
87

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
34
0