Guardrails:为大型语言模型加装防护栏
2026-01-17 09:11:07作者:庞眉杨Will
项目介绍
Guardrails 是一个用于构建可靠人工智能应用的Python框架,通过执行输入/输出防护(Guards),它能检测、量化并缓解特定风险类型的存在。这个工具特别设计来保障大型语言模型(LLMs)的安全与数据的结构化处理。Guardrails Hub提供了丰富的预构建验证器(Validators),这些验证器能够组合成复杂的输入和输出防护机制,确保LLM交互的数据符合预期的标准。项目基于Apache-2.0许可协议,支持社区贡献和扩展。
项目快速启动
安装 Guardrails
首先,确保你的环境已经安装了Python。接着,通过pip安装Guardrails及其依赖:
pip install guardrails-ai
随后,配置Guardrails以准备使用:
guardrails configure
安装必要的验证器,例如用于电话号码格式检查的验证器:
guardrails hub install hub://guardrails/regex_match
示例代码展示如何创建一个防护规则,确保电话号码格式正确:
from guardrails import Guard
from guardrails.hub import RegexMatch
from guardrails.on_fail_actions import OnFailAction
guard = Guard()
guard.use(RegexMatch(regex=r"\( \d{3}\) - *\d{3}- *- \d{4}",
on_fail=OnFailAction.EXCEPTION))
try:
guard.validate("123-456-7890") # 防护通过
except Exception as e:
print(e) # 输出错误信息,当不满足条件时
应用案例和最佳实践
在文本生成场景中,Guardrails可以防止模型产出敏感信息或不符合特定格式的数据。例如,在自动回复邮件的应用中,Guardrails可以确保所有生成的联系信息都遵循统一的格式,从而维护品牌专业形象并减少潜在数据泄露风险。
最佳实践包括:
- 风险评估:明确你的LLM可能遇到的风险点,如隐私信息泄露。
- 定制验证器:根据需求开发专属验证逻辑,增加对特定业务场景的支持。
- 集成测试:在部署前充分测试Guardrails规则,确保它们有效且不会阻碍正常功能。
典型生态项目
虽然具体的生态项目细节未直接提及,但开发者可以利用Guardrails与其他AI和数据处理库结合,比如TensorFlow或PyTorch进行机器学习模型的输入控制,或者与FastAPI等现代Web框架协同工作,保护REST API的输入输出安全。社区贡献者也在不断丰富Guardrails Hub中的验证器集合,使其能更好地适配不同行业和应用场景的需求。
Guardrails通过其开放性鼓励开发者贡献自己的验证器实现,促进了AI应用安全性与标准化的持续进步。对于希望提升自己AI服务稳定性和合规性的开发者来说, Guardrails是一个不可或缺的工具。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.71 K
Ascend Extension for PyTorch
Python
328
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
577
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
135