Spacemacs项目中Orderless与Company性能问题的分析与解决方案
问题背景
在Spacemacs项目的compleseus层中,默认配置了Orderless作为补全风格。Orderless是一个强大的模糊匹配补全框架,能够提供灵活的补全体验。然而,一些用户在使用过程中发现,在Emacs-lisp模式下使用Company进行自动补全时,性能会变得异常缓慢。
问题分析
经过深入调查,这个问题实际上涉及两个层面的因素:
-
Orderless与Company的兼容性问题:Orderless的模糊匹配算法在某些情况下可能与Company的补全机制产生性能冲突。特别是在处理大量候选词时,Orderless的匹配计算可能导致明显的延迟。
-
Undo-tree插件的副作用:另一个影响性能的重要因素是Undo-tree插件。该插件在处理撤销历史时,会在obarray(Emacs的符号表)中创建大量以"undo-tree-id"为前缀的临时符号。这些符号虽然本应是临时的,但由于序列化/反序列化过程中的实现问题,它们被意外地永久保留在符号表中。
解决方案
针对上述问题,Spacemacs社区采取了以下改进措施:
-
优化Orderless配置:在Company的company-capf后端中,暂时禁用Orderless风格,改用更基础的补全风格组合(basic和partial-completion)。这通过定义一个advice包装器实现,在调用company-capf时临时修改completion-styles变量。
-
移除Undo-tree插件:由于Undo-tree不仅导致补全性能问题,还存在其他已知问题,Spacemacs决定完全移除该插件。这一改变从根本上解决了obarray污染问题,显著提升了Emacs-lisp模式下的补全性能。
技术细节
对于仍然需要使用类似功能的用户,可以考虑以下替代方案:
- 对于撤销历史管理,可以考虑使用Emacs内置的撤销系统或更轻量级的替代方案
- 在Emacs-lisp模式下,可以尝试使用Corfu作为Company的替代品,它提供了更好的性能表现
- 对于需要Orderless风格的用户,可以配置仅在特定模式下启用Orderless
结论
Spacemacs通过这次调整,有效解决了自动补全性能问题,同时简化了代码库。这一案例也提醒我们,在构建复杂的编辑器环境时,需要仔细评估各个组件之间的交互影响,特别是那些涉及全局状态(如obarray)的插件。通过合理的架构设计和问题排查,可以显著提升用户体验。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00