Banzai Cloud Pipeline 项目教程
1. 项目介绍
Banzai Cloud Pipeline 是一个开源的云原生应用管理平台,旨在帮助用户在多云环境中部署、管理和监控应用程序。Pipeline 提供了一个统一的界面,支持 Kubernetes、AWS、Azure、Google Cloud 等多种云平台,帮助用户轻松实现跨云环境的应用部署和管理。
主要功能
- 多云支持:支持在多个云平台上部署和管理应用。
- 自动化运维:提供自动化部署、扩展和监控功能。
- 安全性:内置安全策略和合规性检查。
- 可观测性:提供丰富的监控和日志管理功能。
2. 项目快速启动
环境准备
在开始之前,请确保你已经安装了以下工具:
安装步骤
-
克隆项目仓库
git clone https://github.com/banzaicloud/pipeline.git cd pipeline -
配置 Helm Chart
编辑
values.yaml文件,配置你的云平台和 Kubernetes 集群信息。global: provider: "aws" # 设置你的云平台,如 aws, azure, google clusterName: "my-cluster" region: "us-west-2" -
安装 Pipeline
helm install pipeline ./charts/pipeline -
验证安装
使用
kubectl命令查看 Pod 状态,确保所有 Pod 都处于Running状态。kubectl get pods
3. 应用案例和最佳实践
案例1:多云应用部署
假设你有一个需要在 AWS 和 Google Cloud 上部署的应用。使用 Pipeline,你可以轻松实现跨云部署。
-
创建应用定义
在 Pipeline 中创建一个新的应用定义,指定应用的镜像和配置。
apiVersion: pipeline.banzaicloud.io/v1alpha1 kind: Application metadata: name: my-app spec: image: my-app:latest replicas: 3 resources: limits: cpu: "1" memory: "1Gi" -
选择目标云平台
在 Pipeline 界面中选择 AWS 和 Google Cloud 作为目标平台,并启动部署。
-
监控和管理
使用 Pipeline 的监控功能,实时查看应用在不同云平台上的运行状态。
案例2:自动化扩展
Pipeline 支持基于负载的自动化扩展。你可以配置自动扩展策略,确保应用在高负载时自动扩展。
-
配置自动扩展策略
在应用定义中添加自动扩展策略。
spec: autoscaling: enabled: true minReplicas: 2 maxReplicas: 10 targetCPUUtilizationPercentage: 50 -
部署应用
部署应用后,Pipeline 会根据 CPU 使用率自动调整 Pod 数量。
4. 典型生态项目
Prometheus
Prometheus 是一个开源的监控和报警工具,Pipeline 集成了 Prometheus,提供强大的监控和报警功能。
Istio
Istio 是一个服务网格,提供流量管理、安全性和可观测性。Pipeline 支持 Istio 的集成,帮助用户在 Kubernetes 集群中实现微服务管理。
Fluentd
Fluentd 是一个开源的数据收集器,Pipeline 使用 Fluentd 进行日志收集和管理,确保应用日志的集中存储和分析。
通过以上步骤,你可以快速上手 Banzai Cloud Pipeline,并在多云环境中管理和部署你的应用。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00