Google Jsonnet 项目中的 Python Bazel 规则迁移指南
在 Google Jsonnet 项目中,随着 Bazel 8.0.0 版本的发布,Python 相关的构建规则如 py_runtime
和 py_runtime_pair
已经从 Bazel 核心功能中移除。这一变化要求项目开发者需要将这些规则从 rules_python 仓库中导入,而不是继续依赖 Bazel 内置的支持。
背景与变化
Bazel 8.0.0 版本对 Python 支持进行了重构,将 Python 相关的构建规则从核心功能中剥离出来,转移到了独立的 rules_python 仓库。这一变化是 Bazel 模块化战略的一部分,旨在减少核心功能的体积,同时提高特定语言支持的灵活性和可维护性。
对于 Jsonnet 项目来说,这意味着需要更新构建配置,以显式地依赖 rules_python 仓库来获取 Python 构建支持。虽然 Bazel 8.0.0 仍然提供了临时兼容性支持,可以通过标志启用这些规则,但这种支持将在下一个主要版本中被完全移除。
解决方案
项目可以采用两种主要方式来解决这个问题:
方案一:直接导入 rules_python
开发者可以直接从 rules_python 仓库导入所需的 Python 构建规则。这种方式保持了与之前相似的构建逻辑,只是改变了规则的来源。
方案二:使用 Hermetic 工具链
更现代的解决方案是使用 rules_python 提供的 hermetic 工具链功能。这种方法提供了更好的隔离性和可重复性,是 Bazel 生态推荐的 Python 构建方式。
配置示例需要在 MODULE.bazel 文件中声明对 rules_python 的依赖,并设置相应的 Python 版本工具链。同时,需要更新 BUILD 文件中的依赖关系,将原来的 Python 头文件依赖替换为 rules_python 提供的当前 Python 头文件。
实施建议
对于 Jsonnet 项目,采用 hermetic 工具链方案更为推荐,因为它:
- 提供了更好的构建隔离性
- 简化了 Python 版本管理
- 符合 Bazel 的最佳实践
- 可以移除项目中原有的平台定义文件和 Python 仓库构建定义
实施这一变更后,项目将获得更稳定和可维护的 Python 构建支持,同时也为未来的 Bazel 版本升级做好了准备。
总结
Bazel 8.0.0 对 Python 支持的改变是构建系统演进的一部分,虽然需要项目进行一些调整,但最终会带来更好的模块化和可维护性。Jsonnet 项目团队应当优先考虑采用 hermetic 工具链方案,这不仅解决了当前的问题,也为项目的长期健康发展奠定了基础。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~057CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0382- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









