X-AnyLabeling中JSON标注转YOLO OBB格式的完整指南
2025-06-08 07:42:10作者:宣海椒Queenly
背景介绍
X-AnyLabeling是一款功能强大的图像标注工具,广泛应用于计算机视觉领域。在实际项目中,我们经常需要将标注结果转换为特定训练框架支持的格式。本文将详细介绍如何将X-AnyLabeling生成的JSON标注文件转换为YOLO OBB(Oriented Bounding Box)训练格式。
JSON标注文件结构解析
X-AnyLabeling生成的JSON标注文件包含以下关键信息:
- 图像基本信息:图像路径、宽度和高度
- 标注形状信息:每个标注对象包含标签名、点集坐标、形状类型等
- 旋转信息:对于旋转矩形标注,会包含方向参数
以示例中的"barriergate"标注为例,这是一个旋转矩形标注,包含四个顶点坐标和一个方向参数。
YOLO OBB格式要求
YOLO OBB格式与标准YOLO格式的主要区别在于:
- 每个对象使用8个值表示:类别索引和4个归一化的顶点坐标(x1,y1,x2,y2,x3,y3,x4,y4)
- 坐标值需要归一化到[0,1]范围
- 顶点需要按顺时针或逆时针顺序排列
转换步骤详解
1. 数据准备
确保你拥有:
- 原始图像文件
- 对应的JSON标注文件
- 类别名称列表
2. 坐标归一化处理
对于每个标注对象的顶点坐标,需要进行归一化:
归一化x = x坐标 / 图像宽度
归一化y = y坐标 / 图像高度
3. 顶点排序
确保四个顶点按统一顺序(顺时针或逆时针)排列。X-AnyLabeling生成的旋转矩形通常已经是有序的,但建议验证顺序是否正确。
4. 类别索引映射
根据你的类别列表,将文本标签转换为数字索引。例如:
"barriergate" → 0
"other_class" → 1
5. 生成YOLO OBB格式文件
最终每行表示一个对象,格式为:
class_index x1 y1 x2 y2 x3 y3 x4 y4
6. 批量处理脚本
对于大量文件,建议编写Python脚本自动完成转换。主要步骤包括:
- 读取JSON文件
- 提取标注信息
- 进行坐标转换和归一化
- 写入TXT文件
实际应用建议
- 验证标注质量:转换前检查标注是否正确,特别是旋转矩形的顶点顺序
- 保持一致性:确保所有图像的标注都使用相同的顶点顺序
- 处理特殊案例:考虑如何标注和转换部分遮挡或截断的对象
- 数据增强:在YOLO训练流程中,可以加入旋转增强以提升模型对旋转目标的识别能力
常见问题解决方案
- 顶点顺序不一致:使用凸包算法重新排序顶点
- 坐标超出范围:检查归一化计算,确保值在[0,1]之间
- 类别映射错误:建立明确的类别名称到索引的映射表
- 旋转角度处理:如果需要角度信息,可以额外计算并存储
通过以上步骤,你可以高效地将X-AnyLabeling的JSON标注转换为YOLO OBB训练格式,为后续的旋转目标检测模型训练做好准备。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 STM32到GD32项目移植完全指南:从兼容性到实战技巧 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
420
3.22 K
Ascend Extension for PyTorch
Python
230
261
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
330
暂无简介
Dart
685
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
666
仓颉编译器源码及 cjdb 调试工具。
C++
136
869