X-AnyLabeling中JSON标注转YOLO OBB格式的完整指南
2025-06-08 21:04:19作者:宣海椒Queenly
背景介绍
X-AnyLabeling是一款功能强大的图像标注工具,广泛应用于计算机视觉领域。在实际项目中,我们经常需要将标注结果转换为特定训练框架支持的格式。本文将详细介绍如何将X-AnyLabeling生成的JSON标注文件转换为YOLO OBB(Oriented Bounding Box)训练格式。
JSON标注文件结构解析
X-AnyLabeling生成的JSON标注文件包含以下关键信息:
- 图像基本信息:图像路径、宽度和高度
- 标注形状信息:每个标注对象包含标签名、点集坐标、形状类型等
- 旋转信息:对于旋转矩形标注,会包含方向参数
以示例中的"barriergate"标注为例,这是一个旋转矩形标注,包含四个顶点坐标和一个方向参数。
YOLO OBB格式要求
YOLO OBB格式与标准YOLO格式的主要区别在于:
- 每个对象使用8个值表示:类别索引和4个归一化的顶点坐标(x1,y1,x2,y2,x3,y3,x4,y4)
- 坐标值需要归一化到[0,1]范围
- 顶点需要按顺时针或逆时针顺序排列
转换步骤详解
1. 数据准备
确保你拥有:
- 原始图像文件
- 对应的JSON标注文件
- 类别名称列表
2. 坐标归一化处理
对于每个标注对象的顶点坐标,需要进行归一化:
归一化x = x坐标 / 图像宽度
归一化y = y坐标 / 图像高度
3. 顶点排序
确保四个顶点按统一顺序(顺时针或逆时针)排列。X-AnyLabeling生成的旋转矩形通常已经是有序的,但建议验证顺序是否正确。
4. 类别索引映射
根据你的类别列表,将文本标签转换为数字索引。例如:
"barriergate" → 0
"other_class" → 1
5. 生成YOLO OBB格式文件
最终每行表示一个对象,格式为:
class_index x1 y1 x2 y2 x3 y3 x4 y4
6. 批量处理脚本
对于大量文件,建议编写Python脚本自动完成转换。主要步骤包括:
- 读取JSON文件
- 提取标注信息
- 进行坐标转换和归一化
- 写入TXT文件
实际应用建议
- 验证标注质量:转换前检查标注是否正确,特别是旋转矩形的顶点顺序
- 保持一致性:确保所有图像的标注都使用相同的顶点顺序
- 处理特殊案例:考虑如何标注和转换部分遮挡或截断的对象
- 数据增强:在YOLO训练流程中,可以加入旋转增强以提升模型对旋转目标的识别能力
常见问题解决方案
- 顶点顺序不一致:使用凸包算法重新排序顶点
- 坐标超出范围:检查归一化计算,确保值在[0,1]之间
- 类别映射错误:建立明确的类别名称到索引的映射表
- 旋转角度处理:如果需要角度信息,可以额外计算并存储
通过以上步骤,你可以高效地将X-AnyLabeling的JSON标注转换为YOLO OBB训练格式,为后续的旋转目标检测模型训练做好准备。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355