Apache Arrow-RS项目中的行过滤性能基准测试优化实践
2025-06-27 05:24:19作者:尤峻淳Whitney
在数据处理系统中,行过滤(row filtering)是一个基础但至关重要的操作。Apache Arrow-RS项目团队最近发现了一个有趣的现象:某些性能优化在实际查询中表现出显著提升,但在专门的基准测试中却未能体现。本文将深入分析这一现象背后的原因,并分享团队如何改进基准测试以更准确地反映真实场景下的性能表现。
问题背景
团队在优化Arrow-RS的行过滤性能时,发现一个关键矛盾点:当在DataFusion中运行端到端查询时,某些优化能带来明显的性能提升,但同样的优化在专门的arrow_reader_row_filter基准测试中却无法观察到类似的改进。
深入分析
通过对ClickBench数据集(hits.parquet)的分析,团队发现真实场景下的数据具有以下特征:
- 数据选择性约为13.2%(1317万/9999万行)
- 行选择(RowSelection)数量达到1405万次
- 平均每次行选择的连续行长度约为7.11行
相比之下,原有的基准测试使用的测试数据(test.parquet)具有不同的特征:
- 数据选择性高达80%(80147/100000行)
- 行选择次数为67989次
- 平均每次行选择的连续行长度仅为3.1行
这种差异解释了为什么优化效果在不同测试中表现不一致。真实场景中的数据具有:
- 更低的选择性(更多数据被过滤掉)
- 更长的连续行选择
- 完全不同的访问模式
基准测试改进方案
基于这些发现,团队着手开发新的基准测试方法,目标是:
- 更准确地模拟真实查询场景的数据特征
- 包含更真实的访问模式
- 能够捕捉页面缓存等系统级优化效果
新的基准测试将基于ClickBench的实际数据集特征,包括:
- 相似的选择性比率
- 相近的行选择模式
- 真实世界的数据分布
技术启示
这一案例给我们带来几个重要的技术启示:
- 基准测试的设计必须考虑真实场景的数据特征
- 性能优化需要在实际应用场景中验证
- 数据的选择性、访问模式和分布特征会显著影响优化效果
- 微基准测试有时会掩盖系统级优化的价值
总结
通过这次经历,Arrow-RS团队认识到基准测试与实际应用场景匹配的重要性。正在开发的新基准测试将更好地指导未来的性能优化工作,确保优化措施能够在真实场景中产生预期效果。这也提醒我们,在性能优化工作中,理解数据特征与访问模式与算法优化本身同等重要。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

React Native鸿蒙化仓库
JavaScript
211
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
45
0

ArkUI-X adaptation to Android | ArkUI-X支持Android平台的适配层
C++
39
55

ArkUI-X adaptation to iOS | ArkUI-X支持iOS平台的适配层
Objective-C++
19
44