SD-WebUI-EasyPhoto训练过程中显存不足问题的分析与解决方案
2025-06-09 00:59:54作者:薛曦旖Francesca
问题背景
在使用SD-WebUI-EasyPhoto进行人物Lora模型训练时,部分用户遇到了训练失败的问题,具体表现为在训练完成后无法生成最终的Lora模型文件,控制台日志中显示"Failed to obtain Lora after training"错误。经过分析,这主要是由于显存不足导致的验证阶段失败。
问题现象
用户在训练过程中观察到以下关键错误信息:
- 显存分配错误:
Allocation on device 0 would exceed allowed memory. (out of memory)
Currently allocated: 6.44 GiB
Requested: 1.13 GiB
Device limit: 8.00 GiB
Free (according to CUDA): 0 bytes
- 验证阶段失败:
Running validation error, skip it.Error info: Allocation on device 0 would exceed allowed memory.
- 最终训练失败:
Failed to obtain Lora after training, please check the training process.
根本原因分析
该问题主要由以下几个因素共同导致:
-
显存资源不足:用户使用的RTX 3060 Ti显卡仅有8GB显存,在训练过程中已经占用了6.44GB,剩余的显存不足以完成验证阶段的图像生成。
-
验证阶段的高显存需求:EasyPhoto在训练过程中会定期进行验证,生成样张以评估模型效果,这一过程需要额外的显存。
-
训练参数设置:默认的训练配置可能没有充分考虑到中低端显卡的显存限制。
解决方案
方案一:关闭验证功能(推荐)
最直接的解决方案是在训练设置中关闭验证功能:
- 在EasyPhoto训练界面找到"Validation"选项
- 取消勾选或设置为"Disable"
- 重新开始训练
这种方法可以避免验证阶段对显存的需求,使训练能够在有限的显存下顺利完成。
方案二:优化训练参数
如果仍需保留验证功能,可以尝试以下参数调整:
- 降低训练分辨率(如从512降至448)
- 减少批量大小(batch size)
- 降低梯度累积步数(gradient accumulation steps)
- 使用更小的Lora rank值
方案三:手动后处理
对于已经完成训练但验证失败的情况:
- 检查
outputs/easyphoto-user-id-infos/<名称>/user_weights/
目录 - 找到训练过程中保存的checkpoint文件(如
checkpoint-800.safetensors
) - 手动使用这些checkpoint进行图像生成测试,选择效果最好的模型
预防措施
- 监控显存使用:在训练过程中实时关注显存使用情况
- 预处理优化:确保训练图片已经过适当裁剪和尺寸调整
- 硬件升级:对于频繁遇到显存问题的用户,考虑升级到更大显存的显卡
- 云平台方案:短期可使用云平台提供的免费试用资源进行训练
技术建议
对于开发者而言,可以考虑以下改进方向:
- 实现动态显存管理,在检测到显存不足时自动调整验证分辨率
- 提供更详细的显存使用预估和警告机制
- 优化验证阶段的显存使用效率
- 为不同级别显卡提供预设的训练参数配置
通过以上分析和解决方案,用户应该能够顺利在有限显存的设备上完成EasyPhoto的Lora模型训练。记住,在资源受限的环境中,关闭验证功能是最直接有效的解决方案。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0265cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
Jetson TX2开发板官方资源完全指南:从入门到精通 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
273

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8