SD-WebUI-EasyPhoto训练过程中显存不足问题的分析与解决方案
2025-06-09 03:37:11作者:薛曦旖Francesca
问题背景
在使用SD-WebUI-EasyPhoto进行人物Lora模型训练时,部分用户遇到了训练失败的问题,具体表现为在训练完成后无法生成最终的Lora模型文件,控制台日志中显示"Failed to obtain Lora after training"错误。经过分析,这主要是由于显存不足导致的验证阶段失败。
问题现象
用户在训练过程中观察到以下关键错误信息:
- 显存分配错误:
Allocation on device 0 would exceed allowed memory. (out of memory)
Currently allocated: 6.44 GiB
Requested: 1.13 GiB
Device limit: 8.00 GiB
Free (according to CUDA): 0 bytes
- 验证阶段失败:
Running validation error, skip it.Error info: Allocation on device 0 would exceed allowed memory.
- 最终训练失败:
Failed to obtain Lora after training, please check the training process.
根本原因分析
该问题主要由以下几个因素共同导致:
-
显存资源不足:用户使用的RTX 3060 Ti显卡仅有8GB显存,在训练过程中已经占用了6.44GB,剩余的显存不足以完成验证阶段的图像生成。
-
验证阶段的高显存需求:EasyPhoto在训练过程中会定期进行验证,生成样张以评估模型效果,这一过程需要额外的显存。
-
训练参数设置:默认的训练配置可能没有充分考虑到中低端显卡的显存限制。
解决方案
方案一:关闭验证功能(推荐)
最直接的解决方案是在训练设置中关闭验证功能:
- 在EasyPhoto训练界面找到"Validation"选项
- 取消勾选或设置为"Disable"
- 重新开始训练
这种方法可以避免验证阶段对显存的需求,使训练能够在有限的显存下顺利完成。
方案二:优化训练参数
如果仍需保留验证功能,可以尝试以下参数调整:
- 降低训练分辨率(如从512降至448)
- 减少批量大小(batch size)
- 降低梯度累积步数(gradient accumulation steps)
- 使用更小的Lora rank值
方案三:手动后处理
对于已经完成训练但验证失败的情况:
- 检查
outputs/easyphoto-user-id-infos/<名称>/user_weights/目录 - 找到训练过程中保存的checkpoint文件(如
checkpoint-800.safetensors) - 手动使用这些checkpoint进行图像生成测试,选择效果最好的模型
预防措施
- 监控显存使用:在训练过程中实时关注显存使用情况
- 预处理优化:确保训练图片已经过适当裁剪和尺寸调整
- 硬件升级:对于频繁遇到显存问题的用户,考虑升级到更大显存的显卡
- 云平台方案:短期可使用云平台提供的免费试用资源进行训练
技术建议
对于开发者而言,可以考虑以下改进方向:
- 实现动态显存管理,在检测到显存不足时自动调整验证分辨率
- 提供更详细的显存使用预估和警告机制
- 优化验证阶段的显存使用效率
- 为不同级别显卡提供预设的训练参数配置
通过以上分析和解决方案,用户应该能够顺利在有限显存的设备上完成EasyPhoto的Lora模型训练。记住,在资源受限的环境中,关闭验证功能是最直接有效的解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355