Azure AI Inference Python SDK 1.0.0b7版本发布:图像嵌入与结构化输出新特性解析
Azure AI Inference Python SDK是微软Azure云平台提供的用于AI推理任务的开发工具包,它简化了开发者在云端部署和使用AI模型的过程。本次发布的1.0.0b7版本带来了多项重要更新,包括全新的图像嵌入客户端和对结构化输出的支持,这些改进将显著提升开发者在构建AI应用时的效率和灵活性。
图像嵌入功能正式加入
1.0.0b7版本引入了全新的ImageEmbeddingsClient
客户端,专门用于处理图像嵌入任务。图像嵌入是将图像转换为数值向量的过程,这些向量能够捕捉图像的关键特征,广泛应用于图像搜索、相似性比较和分类等场景。
开发者现在可以通过简单的API调用获取图像的嵌入向量,而无需关心底层的复杂实现。这一功能的加入使得Azure AI Inference SDK在计算机视觉领域的能力得到了重要扩展,为构建多模态AI应用提供了更强大的支持。
结构化输出支持
新版本对聊天补全功能进行了重要增强,增加了对结构化JSON输出的支持。这意味着开发者现在可以指定输出的JSON格式,甚至定义详细的JSON Schema,确保AI模型的响应严格遵循预定义的结构。
这一特性特别适合需要精确控制输出格式的场景,比如:
- 构建需要与其他系统集成的AI应用
- 开发需要严格数据格式的业务流程自动化工具
- 创建需要规范化输出的企业级解决方案
SDK提供了两种方式来定义结构化输出:
- 简单的"json-object"标志,用于基本的JSON格式输出
- 完整的JsonSchemaFormat,用于定义详细的输出结构
API使用简化
为了提高开发体验,1.0.0b7版本对消息类的构造函数进行了优化。现在,UserMessage
、SystemMessage
、AssistantMessage
和ToolMessage
等类的content
参数可以作为位置参数直接传递,不再需要显式指定参数名。
这一改进虽然看似微小,但在实际开发中能显著减少代码量,特别是在构建复杂对话历史时。例如,原先需要写成UserMessage(content="我的消息")
的代码,现在可以简化为UserMessage("我的消息")
,使代码更加简洁易读。
问题修复与性能优化
本次更新还包含了一些重要的错误修复和性能改进:
-
修复了在启用追踪功能但未安装azure-core-tracing-opentelemetry时,异步聊天补全可能出现的错误问题。这一修复确保了追踪功能在各种环境下的稳定性。
-
改进了追踪事件的时间戳处理,现在会强制区分提示和补全事件的时间戳,确保聊天历史的顺序正确性。这对于调试和分析AI模型的交互过程尤为重要。
迁移指南
对于已经使用早期版本的开发者,需要注意以下兼容性变化:
原先通过response_format=ChatCompletionsResponseFormatJSON()
配置的JSON格式输出,现在需要改为response_format="json-object"
。建议开发者利用这次机会升级到更强大的结构化输出功能,使用JsonSchemaFormat
来定义详细的输出模式。
总结
Azure AI Inference Python SDK 1.0.0b7版本的发布,通过引入图像嵌入客户端和结构化输出支持,显著扩展了SDK的功能边界。这些新特性不仅丰富了开发者的工具箱,也为构建更复杂、更可靠的AI应用提供了坚实基础。API的简化改进则进一步提升了开发体验,使代码更加简洁优雅。
对于正在构建AI应用的开发者来说,这次更新提供了处理图像数据和精确控制输出格式的新方法,值得尽快评估和采用。随着Azure AI生态系统的持续完善,我们可以期待未来会有更多强大的功能加入这个SDK。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~062CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









