Azure AI Inference Python SDK 1.0.0b7版本发布:图像嵌入与结构化输出新特性解析
Azure AI Inference Python SDK是微软Azure云平台提供的用于AI推理任务的开发工具包,它简化了开发者在云端部署和使用AI模型的过程。本次发布的1.0.0b7版本带来了多项重要更新,包括全新的图像嵌入客户端和对结构化输出的支持,这些改进将显著提升开发者在构建AI应用时的效率和灵活性。
图像嵌入功能正式加入
1.0.0b7版本引入了全新的ImageEmbeddingsClient客户端,专门用于处理图像嵌入任务。图像嵌入是将图像转换为数值向量的过程,这些向量能够捕捉图像的关键特征,广泛应用于图像搜索、相似性比较和分类等场景。
开发者现在可以通过简单的API调用获取图像的嵌入向量,而无需关心底层的复杂实现。这一功能的加入使得Azure AI Inference SDK在计算机视觉领域的能力得到了重要扩展,为构建多模态AI应用提供了更强大的支持。
结构化输出支持
新版本对聊天补全功能进行了重要增强,增加了对结构化JSON输出的支持。这意味着开发者现在可以指定输出的JSON格式,甚至定义详细的JSON Schema,确保AI模型的响应严格遵循预定义的结构。
这一特性特别适合需要精确控制输出格式的场景,比如:
- 构建需要与其他系统集成的AI应用
- 开发需要严格数据格式的业务流程自动化工具
- 创建需要规范化输出的企业级解决方案
SDK提供了两种方式来定义结构化输出:
- 简单的"json-object"标志,用于基本的JSON格式输出
- 完整的JsonSchemaFormat,用于定义详细的输出结构
API使用简化
为了提高开发体验,1.0.0b7版本对消息类的构造函数进行了优化。现在,UserMessage、SystemMessage、AssistantMessage和ToolMessage等类的content参数可以作为位置参数直接传递,不再需要显式指定参数名。
这一改进虽然看似微小,但在实际开发中能显著减少代码量,特别是在构建复杂对话历史时。例如,原先需要写成UserMessage(content="我的消息")的代码,现在可以简化为UserMessage("我的消息"),使代码更加简洁易读。
问题修复与性能优化
本次更新还包含了一些重要的错误修复和性能改进:
-
修复了在启用追踪功能但未安装azure-core-tracing-opentelemetry时,异步聊天补全可能出现的错误问题。这一修复确保了追踪功能在各种环境下的稳定性。
-
改进了追踪事件的时间戳处理,现在会强制区分提示和补全事件的时间戳,确保聊天历史的顺序正确性。这对于调试和分析AI模型的交互过程尤为重要。
迁移指南
对于已经使用早期版本的开发者,需要注意以下兼容性变化:
原先通过response_format=ChatCompletionsResponseFormatJSON()配置的JSON格式输出,现在需要改为response_format="json-object"。建议开发者利用这次机会升级到更强大的结构化输出功能,使用JsonSchemaFormat来定义详细的输出模式。
总结
Azure AI Inference Python SDK 1.0.0b7版本的发布,通过引入图像嵌入客户端和结构化输出支持,显著扩展了SDK的功能边界。这些新特性不仅丰富了开发者的工具箱,也为构建更复杂、更可靠的AI应用提供了坚实基础。API的简化改进则进一步提升了开发体验,使代码更加简洁优雅。
对于正在构建AI应用的开发者来说,这次更新提供了处理图像数据和精确控制输出格式的新方法,值得尽快评估和采用。随着Azure AI生态系统的持续完善,我们可以期待未来会有更多强大的功能加入这个SDK。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00