OpenCTI平台中排除列表大小写敏感问题分析与解决方案
问题背景
在网络安全情报平台OpenCTI中,排除列表(Exclusion List)是一项重要的功能,它允许管理员定义一组特定的值,当用户尝试创建与这些值匹配的威胁指标(IOC)时,系统会自动阻止创建操作。这种机制可以有效防止误报和重复数据的产生。
然而,在OpenCTI 6.5.1版本中,发现了一个关于排除列表功能的重要缺陷:系统在进行值匹配时没有考虑大小写敏感性,导致排除规则可能被绕过。
技术细节分析
在OpenCTI平台中,排除列表通常用于阻止特定域名、IP地址或其他可观察对象的创建。以域名为例,当管理员将"www.google.com"添加到域名排除列表后,理论上任何尝试创建该域名指标的请求都应该被拒绝。
但实际测试表明,如果用户尝试创建"www.Google.com"(首字母大写)的域名指标,系统不会触发排除规则,允许该指标被成功创建。这种大小写敏感性的缺失会导致安全策略执行不完整,可能造成数据重复或误报。
影响范围
这个缺陷的影响主要体现在以下几个方面:
-
安全策略执行不完整:攻击者可能利用大小写变体绕过排除规则,创建本应被阻止的指标。
-
数据质量问题:导致系统中存在相同实体的多个变体,影响数据分析的准确性。
-
运营效率降低:管理员需要手动识别和清理这些变体,增加维护成本。
解决方案
要解决这个问题,需要在值匹配逻辑中引入大小写不敏感的比对机制。具体实现可以考虑以下方式:
-
统一转换为小写比较:在比对排除列表值和输入值时,先将双方都转换为统一的大小写形式(通常是小写),然后再进行比较。
-
使用正则表达式:在比对时使用大小写不敏感的正则表达式标志,确保各种大小写变体都能被正确匹配。
-
数据库层面解决:如果使用支持大小写不敏感比较的数据库,可以在查询时指定大小写不敏感的比对方式。
最佳实践建议
除了修复这个具体问题外,在处理类似的安全策略匹配时,建议考虑以下最佳实践:
-
规范化输入数据:在存储和比较前,对数据进行规范化处理,如统一大小写、去除多余空格等。
-
考虑国际化因素:对于非ASCII字符,需要考虑Unicode的大小写转换规则。
-
记录匹配失败案例:当输入值接近但不完全匹配排除列表时,记录这些案例以便后续分析。
-
定期审查排除列表:确保排除列表中的值考虑了各种可能的变体形式。
总结
OpenCTI平台中排除列表的大小写敏感性问题虽然看似简单,但实际上关系到整个平台的安全策略执行效果和数据质量。通过引入大小写不敏感的匹配机制,可以确保安全策略得到完整执行,同时提高系统的易用性和数据一致性。这个问题的解决也提醒我们,在开发安全相关的功能时,必须考虑各种可能的规避方式,确保防御机制的全面性和鲁棒性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C084
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00