PyGAD:Python遗传算法库使用指南
2024-09-24 19:30:27作者:毕习沙Eudora
1. 项目介绍
PyGAD是一个开源的Python库,用于构建遗传算法并优化机器学习算法(如Keras和PyTorch)。PyGAD支持单目标和多目标问题的优化,并且提供了多种交叉、变异和父代选择的方法。用户可以通过自定义适应度函数来优化不同类型的问题。该库正在积极开发中,定期添加新功能。
2. 项目快速启动
安装
使用pip安装PyGAD:
pip install pygad
快速示例
以下是一个简单的遗传算法示例,用于优化一个简单的数学函数:
import pygad
import numpy
# 定义函数输入
function_inputs = [4, -2, 3, 5, 5, -11, -4, 7]
desired_output = 44
# 定义适应度函数
def fitness_func(ga_instance, solution, solution_idx):
output = numpy.sum(solution * function_inputs)
fitness = 1.0 / (numpy.abs(output - desired_output) + 0.000001)
return fitness
fitness_function = fitness_func
# 创建遗传算法实例
ga_instance = pygad.GA(num_generations=100,
num_parents_mating=7,
fitness_func=fitness_function,
sol_per_pop=50,
num_genes=len(function_inputs))
# 运行遗传算法
ga_instance.run()
# 输出最佳解决方案
solution, solution_fitness, solution_idx = ga_instance.best_solution()
print(f"Parameters of the best solution : {solution}")
print(f"Fitness value of the best solution = {solution_fitness}")
3. 应用案例和最佳实践
应用案例
- 神经网络优化:使用PyGAD优化神经网络的权重和偏置,以提高模型的性能。
- 多目标优化:通过自定义适应度函数,解决多目标优化问题。
- 组合优化:在组合优化问题中,使用遗传算法找到最优解。
最佳实践
- 适应度函数设计:确保适应度函数能够准确反映问题的优化目标。
- 参数调优:调整遗传算法的参数(如种群大小、代数、交叉率和变异率)以获得最佳性能。
- 并行计算:利用PyGAD的并行计算功能加速遗传算法的执行。
4. 典型生态项目
- PyGAD-NN:用于优化神经网络的遗传算法库。
- PyGAD-GANN:用于优化神经网络的遗传算法库。
- PyGAD-CNN:用于优化卷积神经网络的遗传算法库。
- PyGAD-KerasGA:用于优化Keras模型的遗传算法库。
- PyGAD-TorchGA:用于优化PyTorch模型的遗传算法库。
这些生态项目与PyGAD紧密结合,提供了丰富的工具和方法来优化不同类型的机器学习模型。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134