Highway项目在s390x/Z14架构下的编译优化实践
背景介绍
Highway是一个高性能的SIMD(单指令多数据)库,旨在为不同CPU架构提供统一的向量化操作接口。近期在将该项目移植到IBM s390x架构(特别是Z14和Z15处理器)时,开发团队遇到了一些编译优化方面的技术挑战。
技术挑战分析
在s390x/Z14架构上编译Highway项目时,主要遇到了以下两个技术问题:
-
内联函数优化失败:编译器报告"error: inlining failed in call to 'always_inline'"错误,提示目标特定选项不匹配。这个问题出现在尝试使用
CopyBytes模板函数时。 -
处理器指令集兼容性:需要明确区分Z14和Z15处理器的指令集支持,并正确设置编译选项。
解决方案
经过深入分析,我们确定了以下解决方案:
1. 正确的编译器选项
对于s390x架构,特别是Z14及以后的处理器,必须使用特定的编译选项组合:
-march=z14 -mzvector
这些选项确保编译器:
- 针对z14架构进行优化
- 启用z/Architecture向量扩展指令集
2. 处理器目标选择策略
当明确只需要支持z15或更新处理器时,可以禁用z14目标以减少潜在的兼容性问题。但在大多数情况下,同时支持z14和z15是更合理的选择。
性能测试结果
在实际测试中,我们观察到不同处理器架构的性能差异:
------------------------ Z15
dot: 3456: 0.383 (+/- 0.001)
delta: 3456: 0.775 (+/- 0.000)
------------------------ Z14
dot: 3456: 0.088 (+/- 0.001)
值得注意的是,基准测试中偶尔会出现"Measurement failed"警告,这通常是由于测量过程中的噪声(如线程迁移到不同核心)导致的计时偏差,属于正常现象,不影响实际功能。
最佳实践建议
-
明确目标架构:根据实际部署环境选择适当的-march参数(z14或z15)
-
性能测试注意事项:
- 理解基准测试中的噪声因素
- 多次运行取平均值以获得稳定结果
- 区分不同处理器架构的性能特征
-
错误处理:对于内联失败等编译错误,首先检查目标架构设置是否正确
结论
通过合理配置编译选项和深入理解s390x架构特性,Highway项目已成功在Z14/Z15处理器上实现高性能向量化运算。这一经验也为其他需要在IBM大型机架构上部署高性能计算库的开发者提供了有价值的参考。未来,随着z/Architecture的持续演进,我们期待看到更多优化机会和性能提升空间。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00