Apache ShardingSphere读写分离数据源配置问题解析
背景介绍
Apache ShardingSphere作为一款优秀的分布式数据库中间件,其读写分离功能在实际应用中扮演着重要角色。然而在5.5.x版本中,当配置中不包含表定义时,读写分离的数据源选择机制存在一个值得注意的问题。
问题现象
在ShardingSphere 5.5.0至5.5.2版本中,当使用不包含表定义的配置时,读写分离功能会出现异常行为。具体表现为:
- 无表定义的写操作虽然能正常使用事务
- 但这些写操作并不总是路由到配置的写数据源(write_ds)
- 有时会错误地路由到读数据源(read_ds_0)
这个问题在5.4.1版本中表现正常,但在后续版本中出现了异常。
技术分析
问题的核心在于数据源查找逻辑的变化。在5.5.x版本中,当执行SQL时,系统会尝试通过rule.findDataSourceGroupRule(logicDataSourceName)来查找对应的数据源组规则。然而,此时传入的logicDataSourceName参数变成了物理数据源名称(如write_ds或read_ds_0),而非预期的逻辑数据源名称(如配置中的joshua)。
这种变化导致系统无法正确匹配到配置的数据源组,进而跳过了读写分离的逻辑判断,最终导致数据源选择错误。
配置示例分析
以下是一个典型的会触发此问题的配置示例:
dataSources:
write_ds:
# 写数据源配置
read_ds_0:
# 读数据源配置
readOnly: true
rules:
- !READWRITE_SPLITTING
dataSourceGroups:
"joshua": # 逻辑数据源名称
writeDataSourceName: write_ds
readDataSourceNames:
- read_ds_0
# 其他配置...
- !SINGLE
tables:
- "*.*.*" # 通配符表定义
在这个配置中,由于使用了通配符表定义,系统在处理无表SQL时会直接使用物理数据源名称进行查找,而非预期的逻辑数据源名称"joshua"。
影响范围
这个问题主要影响以下场景:
- 执行不涉及具体表的SQL语句,如
SELECT version() - 执行序列操作,如
SELECT nextval('users_id_seq') - 在事务中执行上述操作
在这些场景下,系统本应根据读写分离规则选择合适的数据源,但由于查找逻辑的问题,可能导致错误的数据源选择。
解决方案探讨
针对这个问题,社区提出了几种可能的解决方案:
- 优先使用聚合数据源(aggregatedDataSources)进行查找
- 在无法找到聚合数据源时,再回退到逻辑数据源查找
- 改进数据源名称转换逻辑,确保传入正确的逻辑数据源名称
这些方案需要综合考虑性能影响和功能完整性,特别是要处理好与其他规则(如分片规则)的兼容性问题。
总结
Apache ShardingSphere在5.5.x版本中引入的这个读写分离数据源选择问题,提醒我们在使用中间件时需要特别注意配置细节。对于需要执行无表SQL的场景,建议:
- 明确检查数据源路由是否符合预期
- 在升级版本时进行充分测试
- 考虑使用更精确的表定义而非通配符
- 关注社区对该问题的修复进展
通过深入理解这个问题,开发者可以更好地规避潜在风险,确保分布式数据库系统的稳定运行。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00