Apache ShardingSphere读写分离数据源配置问题解析
背景介绍
Apache ShardingSphere作为一款优秀的分布式数据库中间件,其读写分离功能在实际应用中扮演着重要角色。然而在5.5.x版本中,当配置中不包含表定义时,读写分离的数据源选择机制存在一个值得注意的问题。
问题现象
在ShardingSphere 5.5.0至5.5.2版本中,当使用不包含表定义的配置时,读写分离功能会出现异常行为。具体表现为:
- 无表定义的写操作虽然能正常使用事务
- 但这些写操作并不总是路由到配置的写数据源(write_ds)
- 有时会错误地路由到读数据源(read_ds_0)
这个问题在5.4.1版本中表现正常,但在后续版本中出现了异常。
技术分析
问题的核心在于数据源查找逻辑的变化。在5.5.x版本中,当执行SQL时,系统会尝试通过rule.findDataSourceGroupRule(logicDataSourceName)
来查找对应的数据源组规则。然而,此时传入的logicDataSourceName
参数变成了物理数据源名称(如write_ds或read_ds_0),而非预期的逻辑数据源名称(如配置中的joshua)。
这种变化导致系统无法正确匹配到配置的数据源组,进而跳过了读写分离的逻辑判断,最终导致数据源选择错误。
配置示例分析
以下是一个典型的会触发此问题的配置示例:
dataSources:
write_ds:
# 写数据源配置
read_ds_0:
# 读数据源配置
readOnly: true
rules:
- !READWRITE_SPLITTING
dataSourceGroups:
"joshua": # 逻辑数据源名称
writeDataSourceName: write_ds
readDataSourceNames:
- read_ds_0
# 其他配置...
- !SINGLE
tables:
- "*.*.*" # 通配符表定义
在这个配置中,由于使用了通配符表定义,系统在处理无表SQL时会直接使用物理数据源名称进行查找,而非预期的逻辑数据源名称"joshua"。
影响范围
这个问题主要影响以下场景:
- 执行不涉及具体表的SQL语句,如
SELECT version()
- 执行序列操作,如
SELECT nextval('users_id_seq')
- 在事务中执行上述操作
在这些场景下,系统本应根据读写分离规则选择合适的数据源,但由于查找逻辑的问题,可能导致错误的数据源选择。
解决方案探讨
针对这个问题,社区提出了几种可能的解决方案:
- 优先使用聚合数据源(aggregatedDataSources)进行查找
- 在无法找到聚合数据源时,再回退到逻辑数据源查找
- 改进数据源名称转换逻辑,确保传入正确的逻辑数据源名称
这些方案需要综合考虑性能影响和功能完整性,特别是要处理好与其他规则(如分片规则)的兼容性问题。
总结
Apache ShardingSphere在5.5.x版本中引入的这个读写分离数据源选择问题,提醒我们在使用中间件时需要特别注意配置细节。对于需要执行无表SQL的场景,建议:
- 明确检查数据源路由是否符合预期
- 在升级版本时进行充分测试
- 考虑使用更精确的表定义而非通配符
- 关注社区对该问题的修复进展
通过深入理解这个问题,开发者可以更好地规避潜在风险,确保分布式数据库系统的稳定运行。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0266cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









