Apache ShardingSphere读写分离数据源配置问题解析
背景介绍
Apache ShardingSphere作为一款优秀的分布式数据库中间件,其读写分离功能在实际应用中扮演着重要角色。然而在5.5.x版本中,当配置中不包含表定义时,读写分离的数据源选择机制存在一个值得注意的问题。
问题现象
在ShardingSphere 5.5.0至5.5.2版本中,当使用不包含表定义的配置时,读写分离功能会出现异常行为。具体表现为:
- 无表定义的写操作虽然能正常使用事务
 - 但这些写操作并不总是路由到配置的写数据源(write_ds)
 - 有时会错误地路由到读数据源(read_ds_0)
 
这个问题在5.4.1版本中表现正常,但在后续版本中出现了异常。
技术分析
问题的核心在于数据源查找逻辑的变化。在5.5.x版本中,当执行SQL时,系统会尝试通过rule.findDataSourceGroupRule(logicDataSourceName)来查找对应的数据源组规则。然而,此时传入的logicDataSourceName参数变成了物理数据源名称(如write_ds或read_ds_0),而非预期的逻辑数据源名称(如配置中的joshua)。
这种变化导致系统无法正确匹配到配置的数据源组,进而跳过了读写分离的逻辑判断,最终导致数据源选择错误。
配置示例分析
以下是一个典型的会触发此问题的配置示例:
dataSources:
  write_ds:
    # 写数据源配置
  read_ds_0:
    # 读数据源配置
    readOnly: true
rules:
  - !READWRITE_SPLITTING
    dataSourceGroups:
      "joshua":  # 逻辑数据源名称
        writeDataSourceName: write_ds
        readDataSourceNames:
          - read_ds_0
    # 其他配置...
  - !SINGLE
    tables:
      - "*.*.*"  # 通配符表定义
在这个配置中,由于使用了通配符表定义,系统在处理无表SQL时会直接使用物理数据源名称进行查找,而非预期的逻辑数据源名称"joshua"。
影响范围
这个问题主要影响以下场景:
- 执行不涉及具体表的SQL语句,如
SELECT version() - 执行序列操作,如
SELECT nextval('users_id_seq') - 在事务中执行上述操作
 
在这些场景下,系统本应根据读写分离规则选择合适的数据源,但由于查找逻辑的问题,可能导致错误的数据源选择。
解决方案探讨
针对这个问题,社区提出了几种可能的解决方案:
- 优先使用聚合数据源(aggregatedDataSources)进行查找
 - 在无法找到聚合数据源时,再回退到逻辑数据源查找
 - 改进数据源名称转换逻辑,确保传入正确的逻辑数据源名称
 
这些方案需要综合考虑性能影响和功能完整性,特别是要处理好与其他规则(如分片规则)的兼容性问题。
总结
Apache ShardingSphere在5.5.x版本中引入的这个读写分离数据源选择问题,提醒我们在使用中间件时需要特别注意配置细节。对于需要执行无表SQL的场景,建议:
- 明确检查数据源路由是否符合预期
 - 在升级版本时进行充分测试
 - 考虑使用更精确的表定义而非通配符
 - 关注社区对该问题的修复进展
 
通过深入理解这个问题,开发者可以更好地规避潜在风险,确保分布式数据库系统的稳定运行。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00