.NET MAUI 中 iOS 平台 OpenUrl 方法失效问题解析
问题背景
在 .NET MAUI 9.0.40 SR4 版本中,iOS 平台上的 OpenUrl 方法出现了不执行的问题。这个问题影响了使用深度链接(Deep Linking)功能的应用程序,特别是那些需要通过自定义 URL Scheme 从网页跳转回应用并处理登录流程的场景。
技术细节
在 iOS 平台上,传统的 OpenUrl 方法调用方式已经发生了变化。原先的实现方式是通过 AppDelegate 中的 OpenUrl 方法来处理传入的 URL,但在新版本中,这一机制已经迁移到了 SceneDelegate。
旧实现方式
base.OpenUrl(application, url, options);
if (url == null || string.IsNullOrWhiteSpace(url.ToString()))
{
return true;
}
AuthenticationContinuationHelper.SetAuthenticationContinuationEventArgs(url);
if (url.ToString().StartsWith("OurKeyWord", StringComparison.OrdinalIgnoreCase))
{
MainThread.BeginInvokeOnMainThread(async () =>
{
var result = await loginPage.ViewModel.TryLogin(logintype);
});
}
新实现方案
开发者发现需要重写 SceneDelegate 中的 OpenUrl 方法:
public override bool OpenUrl(UIScene scene, NSSet<UIOpenUrlContext> set)
{
var url = set.ToArray().First().Url;
// 后续处理逻辑...
}
解决方案
-
迁移到 SceneDelegate:开发者需要将 URL 处理逻辑从 AppDelegate 迁移到 SceneDelegate 中。
-
URL 获取方式变化:现在 URL 是通过 UIOpenUrlContext 集合获取的,需要使用
set.ToArray().First().Url来提取。 -
Info.plist 配置:确保在 Info.plist 中正确配置了 URL Scheme:
<key>CFBundleURLTypes</key>
<array>
<dict>
<key>CFBundleURLSchemes</key>
<array>
<string>OurKeyWord</string>
</array>
</dict>
</array>
深入理解
这一变化反映了 iOS 平台向多窗口支持的演进。SceneDelegate 的引入是为了更好地管理应用的生命周期和 UI 状态,特别是在支持多个窗口的场景下。因此,与 UI 相关的操作,包括 URL 处理,都迁移到了 SceneDelegate 中。
对于 .NET MAUI 开发者来说,理解这一底层变化很重要,因为它不仅影响深度链接功能,还可能影响其他与应用生命周期相关功能的实现方式。
最佳实践
-
兼容性考虑:在实现时应该同时考虑新旧两种方式,以确保应用在不同 iOS 版本上都能正常工作。
-
错误处理:增加对 URL 提取过程的错误处理,防止集合为空等情况导致应用崩溃。
-
测试验证:在实现后,应该通过实际场景测试验证深度链接功能是否正常工作。
这一问题的解决展示了 .NET MAUI 开发中需要关注底层平台变化的重要性,特别是在处理平台特定功能时。开发者需要保持对 iOS SDK 变化的关注,并及时调整实现方式。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00