Arm机器学习示例项目教程
1. 项目介绍
Arm机器学习示例项目(ML-examples)是一个开源项目,旨在为开发者提供一系列机器学习教程和示例代码。这些示例涵盖了从基础的模型部署到复杂的应用场景,帮助开发者更好地理解和使用Arm的机器学习技术。项目包含了多个子项目,每个子项目都有详细的教程和源代码,适合不同层次的开发者学习和参考。
2. 项目快速启动
2.1 克隆项目
首先,你需要克隆这个项目到本地:
git clone https://github.com/ARM-software/ML-examples.git
2.2 安装依赖
进入项目目录并安装所需的依赖:
cd ML-examples
pip install -r requirements.txt
2.3 运行示例
以pyarmnn-fire-detection
为例,运行以下命令启动示例:
cd pyarmnn-fire-detection
python main.py
3. 应用案例和最佳实践
3.1 火灾检测
pyarmnn-fire-detection
示例展示了如何使用PyArmNN在Raspberry Pi上部署一个用于检测火灾的神经网络。该示例详细介绍了模型的训练、转换和部署过程,适合初学者学习。
3.2 多手势识别
multi-gesture-recognition
示例展示了如何使用TensorFlow和Raspberry Pi 4 Model B或Pi 3训练一个卷积神经网络,以识别多种手势。该示例适合中级开发者学习如何从零开始构建和训练模型。
3.3 图像识别
tflm-cmsisnn-mbed-image-recognition
示例展示了如何在Discovery STM32F746G开发板上使用TensorFlow Lite for Microcontrollers (TFLM)和CMSIS-NN进行图像识别。该示例适合高级开发者学习如何在嵌入式设备上部署机器学习模型。
4. 典型生态项目
4.1 Arm NN
Arm NN是一个用于在Arm架构上优化和部署机器学习模型的SDK。ML-examples项目中的多个示例都使用了Arm NN,展示了如何在Android设备上部署和优化模型。
4.2 TensorFlow Lite
TensorFlow Lite是一个轻量级的机器学习框架,适用于移动和嵌入式设备。ML-examples项目中的多个示例都使用了TensorFlow Lite,展示了如何将模型转换为TFLite格式并在设备上运行。
4.3 CMSIS-NN
CMSIS-NN是Arm提供的一个神经网络库,专门为Cortex-M处理器优化。ML-examples项目中的多个示例都使用了CMSIS-NN,展示了如何在低功耗设备上高效运行神经网络。
通过这些示例和教程,开发者可以快速上手并深入理解Arm机器学习技术的应用和优化方法。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++096AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









