Arm机器学习示例项目教程
1. 项目介绍
Arm机器学习示例项目(ML-examples)是一个开源项目,旨在为开发者提供一系列机器学习教程和示例代码。这些示例涵盖了从基础的模型部署到复杂的应用场景,帮助开发者更好地理解和使用Arm的机器学习技术。项目包含了多个子项目,每个子项目都有详细的教程和源代码,适合不同层次的开发者学习和参考。
2. 项目快速启动
2.1 克隆项目
首先,你需要克隆这个项目到本地:
git clone https://github.com/ARM-software/ML-examples.git
2.2 安装依赖
进入项目目录并安装所需的依赖:
cd ML-examples
pip install -r requirements.txt
2.3 运行示例
以pyarmnn-fire-detection为例,运行以下命令启动示例:
cd pyarmnn-fire-detection
python main.py
3. 应用案例和最佳实践
3.1 火灾检测
pyarmnn-fire-detection示例展示了如何使用PyArmNN在Raspberry Pi上部署一个用于检测火灾的神经网络。该示例详细介绍了模型的训练、转换和部署过程,适合初学者学习。
3.2 多手势识别
multi-gesture-recognition示例展示了如何使用TensorFlow和Raspberry Pi 4 Model B或Pi 3训练一个卷积神经网络,以识别多种手势。该示例适合中级开发者学习如何从零开始构建和训练模型。
3.3 图像识别
tflm-cmsisnn-mbed-image-recognition示例展示了如何在Discovery STM32F746G开发板上使用TensorFlow Lite for Microcontrollers (TFLM)和CMSIS-NN进行图像识别。该示例适合高级开发者学习如何在嵌入式设备上部署机器学习模型。
4. 典型生态项目
4.1 Arm NN
Arm NN是一个用于在Arm架构上优化和部署机器学习模型的SDK。ML-examples项目中的多个示例都使用了Arm NN,展示了如何在Android设备上部署和优化模型。
4.2 TensorFlow Lite
TensorFlow Lite是一个轻量级的机器学习框架,适用于移动和嵌入式设备。ML-examples项目中的多个示例都使用了TensorFlow Lite,展示了如何将模型转换为TFLite格式并在设备上运行。
4.3 CMSIS-NN
CMSIS-NN是Arm提供的一个神经网络库,专门为Cortex-M处理器优化。ML-examples项目中的多个示例都使用了CMSIS-NN,展示了如何在低功耗设备上高效运行神经网络。
通过这些示例和教程,开发者可以快速上手并深入理解Arm机器学习技术的应用和优化方法。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00