Pyodide 中 pytest 测试框架运行失败问题分析与解决
问题背景
Pyodide 是一个能够在浏览器中运行 Python 的科学计算栈的项目,它将 Python 解释器和科学计算库编译为 WebAssembly。近期在使用 Pyodide 环境运行 pytest 测试框架时,出现了测试收集阶段失败的问题。
问题现象
在 Pyodide 环境中执行简单的 pytest 命令时,会出现以下错误:
FileNotFoundError: [Errno 44] No such file or directory
错误发生在 pytest 尝试截断临时文件时,具体是在 _pytest/capture.py 文件的 snap() 方法中调用 self.tmpfile.truncate() 时失败。
技术分析
根本原因
这个问题源于 Emscripten 对文件描述符处理的不足。在 Emscripten 的实现中:
- 每个文件描述符都映射到一个
FSStream ftruncate(fd, len)的实现方式是调用truncate(stream.path, len)
这种实现存在一个关键缺陷:并非所有文件描述符都有对应的文件路径。实际上,创建"未命名临时文件"是一种常见模式,即打开一个文件后立即取消其链接。
更深层次的技术细节
在 Unix 系统中,文件描述符和文件路径是两个独立的概念。一个文件被打开后,即使其路径被删除(unlink),文件描述符仍然有效,直到被显式关闭。这种机制常被用于创建临时文件。
然而,Emscripten 的实现假设每个文件描述符都有对应的路径,这在处理 pytest 的临时文件捕获机制时导致了问题。pytest 使用临时文件来捕获测试输出,这些文件可能没有持久化的路径。
解决方案
上游修复
这个问题已经在 Emscripten 核心项目中得到修复。修复内容包括:
- 正确处理没有路径的文件描述符
- 实现了真正的
ftruncate系统调用语义 - 确保临时文件操作的正确性
Pyodide 版本影响
该问题影响了 Pyodide 0.27.4 版本。虽然修复已经存在于上游,但在 Pyodide 0.27.4 发布时,由于构建过程中的一个手动操作错误,导致修复没有正确包含在发布版本中。
临时解决方案
对于无法立即升级的用户,可以考虑以下临时方案:
- 使用 pytest 的
-p no:capture参数禁用输出捕获 - 在测试代码中避免使用需要文件截断的操作
- 等待 Pyodide 0.27.5 修复版本发布
最佳实践建议
对于在 Pyodide 环境中运行测试的用户,建议:
- 定期更新 Pyodide 版本以获取最新的修复
- 在 CI 环境中明确指定 Pyodide 版本
- 对于关键测试流程,考虑添加版本检查逻辑
- 关注 Pyodide 项目的发布说明,了解兼容性变化
总结
Pyodide 环境中 pytest 运行失败的问题展示了 WebAssembly 环境下系统调用模拟的复杂性。通过上游修复和版本管理,这个问题已经得到解决。对于依赖 Pyodide 进行测试的开发者,理解这些底层机制有助于更好地诊断和解决类似问题。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00