ChatGLM3项目中FinetuningConfig类training_args参数默认值问题解析
2025-05-16 17:54:39作者:幸俭卉
在使用ChatGLM3项目进行模型微调时,许多开发者遇到了一个关于dataclasses默认值设置的常见问题。本文将深入分析这个问题的成因、解决方案以及背后的技术原理。
问题现象
当运行ChatGLM3项目中的finetune_demo/lora_finetune.ipynb示例时,系统会抛出以下错误:
ValueError: mutable default <class 'transformers.training_args_seq2seq.Seq2SeqTrainingArguments'> for field training_args is not allowed: use default_factory
这个错误明确指出了问题所在:在FinetuningConfig类的training_args字段中,直接使用了可变对象作为默认值,而这是Python dataclasses所不允许的。
技术背景
在Python的dataclasses中,直接为字段指定可变对象(如列表、字典或自定义类实例)作为默认值是一个常见的陷阱。这是因为:
- 可变默认值的共享问题:Python在类定义时就会评估默认值,所有实例将共享同一个默认对象引用
- dataclasses的设计原则:为了防止意外的共享状态,dataclasses明确禁止这种用法
- default_factory机制:作为解决方案,dataclasses提供了default_factory,它会在每次创建实例时调用工厂函数生成新的默认值
解决方案分析
在ChatGLM3项目的finetune_hf.py文件中,FinetuningConfig类的training_args字段原本是这样定义的:
training_args: Seq2SeqTrainingArguments = field(default=Seq2SeqTrainingArguments(...))
正确的做法应该是使用default_factory:
training_args: Seq2SeqTrainingArguments = field(default_factory=lambda: Seq2SeqTrainingArguments(...))
这种修改确保了:
- 每次创建FinetuningConfig实例时都会生成新的Seq2SeqTrainingArguments对象
- 避免了不同配置实例间意外共享同一个训练参数对象
- 符合Python dataclasses的最佳实践
版本兼容性说明
这个问题在不同版本的dataclasses库中表现可能不同:
- 较新版本的dataclasses会直接抛出ValueError阻止这种用法
- 旧版本可能允许但会导致潜在的问题
- 使用default_factory是向前和向后兼容的解决方案
最佳实践建议
在定义dataclass时,对于任何可变对象作为默认值的情况,都应遵循以下原则:
- 基本类型(int, str, float等)可以直接使用default
- 不可变集合(tuple, frozenset)可以直接使用default
- 可变对象(list, dict, 自定义类实例)必须使用default_factory
- 对于复杂的默认值,可以使用lambda表达式或定义专门的工厂函数
总结
这个问题的解决不仅修复了ChatGLM3项目中的微调示例,更重要的是展示了Python中关于可变对象和默认参数的重要概念。理解并正确应用default_factory机制,可以帮助开发者避免许多潜在的共享状态问题,写出更加健壮的代码。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
182
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
274
94
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.41 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1