dbt-core项目新增batch_size配置项支持微批处理增量模型
2025-05-22 13:19:50作者:史锋燃Gardner
在数据仓库构建过程中,增量模型(incremental model)是一种常见且高效的建模方式,它只处理新增或变更的数据,而非全量重建。dbt-core作为流行的数据转换工具,近期在其增量模型功能上进行了重要增强,引入了全新的微批处理(microbatch)策略及相关配置参数。
微批处理策略的核心概念
微批处理是增量模型的一种新型实现策略,它将数据增量过程分解为更小的处理单元(批次),每个批次处理特定时间范围内的数据。这种策略特别适合处理大规模数据集,能够带来以下优势:
- 降低单次处理的数据量,减少资源消耗
- 提高处理过程的容错性
- 实现更精细化的增量控制
batch_size配置项详解
作为微批处理策略的核心参数,batch_size定义了每个处理批次的时间粒度。开发者可以在模型SQL文件或YAML配置文件中指定该参数:
-- 在模型SQL中配置
{{ config(
materialization='incremental',
incremental_strategy='microbatch',
event_time='my_time_field',
batch_size='day'
)
}}
# 在模型YAML中配置
models:
- name: my_model
config:
event_time: my_time_field
incremental_strategy: microbatch
batch_size: day
支持的参数值
batch_size目前支持三种时间粒度:
day
:按天划分批次month
:按月划分批次year
:按年划分批次
技术实现原理
batch_size参数与微批处理策略中的其他两个关键概念紧密配合:
- event_time:标识记录时间戳的字段,用于确定数据所属的批次
- lookback:回溯参数,允许处理当前批次之前若干批次的数据,确保数据完整性
当系统执行微批处理时,会根据batch_size的设置将event_time字段的值映射到对应的时间粒度起点。例如,当batch_size='day'时,所有同一天的数据会被归入同一个批次处理。
实际应用场景
假设我们有一个电商订单表,需要每天增量处理前一天的订单数据:
- 对于实时性要求高的场景,可设置batch_size='day'
- 对于月度报表场景,可设置batch_size='month'减少处理频次
- 对于年度汇总分析,可设置batch_size='year'实现年度批次处理
最佳实践建议
- 根据数据量和业务需求选择适当的batch_size
- 高频小批次(如day)适合变化快、实时性要求高的数据
- 低频大批次(如month/year)适合变化慢、分析周期长的数据
- 结合lookback参数处理边界情况,确保数据完整性
这一增强功能使dbt-core的增量模型处理更加灵活和强大,为不同规模和时间特性的数据集提供了更精细的控制能力。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
974
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133