ScottPlot实现动态垂直缩放以适应可视区域数据
2025-06-06 05:53:50作者:苗圣禹Peter
概述
ScottPlot作为一款强大的.NET数据可视化库,提供了丰富的图表交互功能。在实际应用中,我们经常需要根据当前水平可视范围动态调整垂直轴范围,以便更好地展示数据细节。本文将详细介绍如何在ScottPlot中实现这一功能。
基本原理
实现动态垂直缩放的核心思路是:
- 获取当前视图的水平范围
- 计算该范围内数据的垂直极值
- 根据计算结果设置垂直轴范围
基础实现方法
对于单个信号图,可以通过以下代码实现基础功能:
// 启用连续自动缩放
formsPlot1.Plot.Axes.ContinuouslyAutoscale = true;
// 设置自定义缩放动作
formsPlot1.Plot.Axes.ContinuousAutoscaleAction = (RenderPack rp) =>
{
// 获取当前视图范围
AxisLimits limits = formsPlot1.Plot.Axes.GetLimits();
// 计算可视范围内的数据索引
int indexLeft = (int)(limits.Left * sampleRate);
int indexRight = (int)(limits.Right * sampleRate);
// 确保索引有效
indexLeft = NumericConversion.Clamp(indexLeft, 0, dataValues.Length - 1);
indexRight = NumericConversion.Clamp(indexRight, 0, dataValues.Length - 1);
if (indexLeft == indexRight)
return;
// 计算可视范围内的数据极值
double min = dataValues[indexLeft];
double max = dataValues[indexLeft];
for (int i = indexLeft; i <= indexRight; i++)
{
min = Math.Min(min, dataValues[i]);
max = Math.Max(max, dataValues[i]);
}
// 设置垂直轴范围
rp.Plot.Axes.SetLimitsY(min, max);
};
多图表处理
当需要同时处理多个信号图时,可以扩展上述方法:
// 计算所有可见图表在可视范围内的垂直极值
double min = double.MaxValue;
double max = double.MinValue;
for (int plotIndex = 0; plotIndex < SignalPlots.Count; plotIndex++)
{
if (!SignalPlots[plotIndex].IsVisible) continue;
// 获取当前图表数据在可视范围内的极值
double plotMin = Data[plotIndex].Slice(indexLeft, indexRight - indexLeft).Min();
double plotMax = Data[plotIndex].Slice(indexLeft, indexRight - indexLeft).Max();
// 考虑Y轴偏移量
min = Math.Min(min, plotMin + SignalPlots[plotIndex].Data.YOffset);
max = Math.Max(max, plotMax + SignalPlots[plotIndex].Data.YOffset);
}
// 设置垂直轴范围,并添加5%的边距
double extraMargin = (max - min) * 0.05;
SP.Plot.Axes.SetLimitsY(min - extraMargin, max + extraMargin);
性能优化建议
- 数据切片优化:对于大数据集,使用高效的切片方法减少计算量
- 可见性检查:只处理当前可见的图表
- 边距控制:适当添加边距避免数据紧贴坐标轴边界
- 索引计算优化:确保索引计算高效且准确
应用场景
这种动态缩放技术特别适用于:
- 长时间序列数据分析
- 高频信号监测
- 实时数据监控系统
- 需要精细查看局部数据特征的场景
总结
ScottPlot通过其灵活的API和事件系统,使得实现动态垂直缩放变得简单高效。开发者可以根据具体需求调整算法,平衡显示效果和性能。无论是单图表还是多图表场景,都能通过适当的方法实现理想的动态缩放效果。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355