RAdam 优化器使用教程
2024-08-11 05:06:29作者:曹令琨Iris
项目介绍
RAdam(Rectified Adam)是一种改进的优化器,旨在提高训练稳定性并减少Adam优化器的方差问题。RAdam通过引入一个自适应的矩估计修正项,可以在训练初期提供更稳定的梯度更新。该项目由Liyuan Liu等人开发,并在代码托管平台上开源。
项目快速启动
安装
首先,确保你已经安装了PyTorch。如果没有安装,可以通过以下命令安装:
pip install torch
然后,克隆RAdam项目的仓库:
git clone https://gitcode.com/LiyuanLucasLiu/RAdam.git
cd RAdam
使用示例
以下是一个简单的示例,展示如何在PyTorch模型中使用RAdam优化器:
import torch
import torch.nn as nn
import torch.optim as optim
from radam import RAdam
# 定义一个简单的神经网络
class SimpleNet(nn.Module):
def __init__(self):
super(SimpleNet, self).__init__()
self.fc1 = nn.Linear(784, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x
# 初始化模型和优化器
model = SimpleNet()
optimizer = RAdam(model.parameters(), lr=0.001)
# 示例训练循环
for epoch in range(10):
for data, target in dataloader:
optimizer.zero_grad()
output = model(data)
loss = nn.CrossEntropyLoss()(output, target)
loss.backward()
optimizer.step()
应用案例和最佳实践
应用案例
RAdam已经在多个领域和任务中显示出其优越性,包括图像分类、自然语言处理等。以下是一些具体的应用案例:
- 图像分类:在ImageNet数据集上,RAdam能够提供比传统Adam优化器更高的准确率。
- 自然语言处理:在BERT模型的训练中,RAdam能够提高模型的收敛速度和性能。
最佳实践
- 学习率调整:虽然RAdam对学习率的敏感性较低,但仍建议根据具体任务调整学习率。
- 预热阶段:如果模型在训练初期不稳定,可以考虑使用预热阶段来逐步增加学习率。
- 超参数调优:尽管RAdam在大多数情况下表现良好,但仍建议对超参数进行调优以获得最佳性能。
典型生态项目
RAdam作为优化器,可以与多种PyTorch生态项目结合使用,以下是一些典型的生态项目:
- Fast.ai:Fast.ai库提供了对RAdam的支持,可以方便地在Fast.ai的模型训练中使用RAdam。
- Hugging Face Transformers:在Hugging Face的Transformers库中,RAdam可以用于训练BERT等预训练模型。
- PyTorch Lightning:PyTorch Lightning是一个高级的PyTorch封装库,支持RAdam作为优化器。
通过结合这些生态项目,可以更高效地利用RAdam优化器进行模型训练和优化。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C059
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
449
3.36 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
704
167
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.25 K
685
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
164
59
React Native鸿蒙化仓库
JavaScript
279
331
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1