Scrapinghub API 客户端技术文档
2024-12-26 10:57:45作者:董斯意
1. 安装指南
1.1 环境要求
在使用 scrapinghub 库之前,请确保您的系统满足以下要求:
- Python 2.7 或 Python 3.5 及以上版本
1.2 安装步骤
您可以通过以下两种方式安装 scrapinghub 库:
1.2.1 快速安装
使用 pip 命令快速安装 scrapinghub 库:
pip install scrapinghub
1.2.2 安装带有 MessagePack 支持的版本
为了获得更好的响应时间和带宽使用效率,您可以安装带有 MessagePack 支持的版本:
pip install scrapinghub[msgpack]
2. 项目的使用说明
2.1 基本使用
scrapinghub 是一个用于与 Scrapinghub API 进行通信的 Python 库。通过该库,您可以轻松地与 Scrapinghub 平台进行交互,执行诸如管理爬虫项目、调度任务、获取数据等操作。
2.2 初始化客户端
在使用 scrapinghub 库之前,您需要初始化一个客户端实例。以下是一个简单的示例:
from scrapinghub import ScrapinghubClient
# 初始化客户端
client = ScrapinghubClient('YOUR_API_KEY')
2.3 获取项目信息
您可以通过客户端获取 Scrapinghub 平台上的项目信息:
# 获取项目列表
projects = client.projects.list()
# 获取特定项目
project = client.get_project('PROJECT_ID')
2.4 调度任务
您可以使用 scrapinghub 库来调度爬虫任务:
# 调度任务
job = project.jobs.run('SPIDER_NAME')
2.5 获取任务数据
任务完成后,您可以获取任务的数据:
# 获取任务数据
items = job.items.iter()
for item in items:
print(item)
3. 项目 API 使用文档
3.1 客户端 API
ScrapinghubClient 是 scrapinghub 库的核心类,用于与 Scrapinghub API 进行交互。以下是该类的主要方法:
projects.list(): 获取项目列表。get_project(project_id): 获取特定项目实例。
3.2 项目 API
Project 类代表 Scrapinghub 平台上的一个项目,以下是该类的主要方法:
jobs.run(spider_name): 调度指定爬虫的任务。jobs.list(): 获取项目中的任务列表。jobs.get(job_id): 获取特定任务实例。
3.3 任务 API
Job 类代表 Scrapinghub 平台上的一个任务,以下是该类的主要方法:
items.iter(): 获取任务的数据项。logs.iter(): 获取任务的日志。metadata.get(): 获取任务的元数据。
4. 项目安装方式
4.1 通过 pip 安装
您可以通过 pip 命令安装 scrapinghub 库,具体命令如下:
pip install scrapinghub
4.2 安装带有 MessagePack 支持的版本
如果您希望获得更好的性能,可以安装带有 MessagePack 支持的版本:
pip install scrapinghub[msgpack]
4.3 验证安装
安装完成后,您可以通过以下命令验证 scrapinghub 库是否安装成功:
python -c "import scrapinghub; print(scrapinghub.__version__)"
通过以上步骤,您应该能够成功安装并使用 scrapinghub 库与 Scrapinghub API 进行交互。希望本文档能够帮助您更好地理解和使用该项目。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C073
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
460
3.43 K
暂无简介
Dart
713
170
Ascend Extension for PyTorch
Python
267
304
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
186
71
React Native鸿蒙化仓库
JavaScript
284
332
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
842
417
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
446
130
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
105
119