Scrapinghub API 客户端技术文档
2024-12-26 19:34:11作者:董斯意
1. 安装指南
1.1 环境要求
在使用 scrapinghub 库之前,请确保您的系统满足以下要求:
- Python 2.7 或 Python 3.5 及以上版本
1.2 安装步骤
您可以通过以下两种方式安装 scrapinghub 库:
1.2.1 快速安装
使用 pip 命令快速安装 scrapinghub 库:
pip install scrapinghub
1.2.2 安装带有 MessagePack 支持的版本
为了获得更好的响应时间和带宽使用效率,您可以安装带有 MessagePack 支持的版本:
pip install scrapinghub[msgpack]
2. 项目的使用说明
2.1 基本使用
scrapinghub 是一个用于与 Scrapinghub API 进行通信的 Python 库。通过该库,您可以轻松地与 Scrapinghub 平台进行交互,执行诸如管理爬虫项目、调度任务、获取数据等操作。
2.2 初始化客户端
在使用 scrapinghub 库之前,您需要初始化一个客户端实例。以下是一个简单的示例:
from scrapinghub import ScrapinghubClient
# 初始化客户端
client = ScrapinghubClient('YOUR_API_KEY')
2.3 获取项目信息
您可以通过客户端获取 Scrapinghub 平台上的项目信息:
# 获取项目列表
projects = client.projects.list()
# 获取特定项目
project = client.get_project('PROJECT_ID')
2.4 调度任务
您可以使用 scrapinghub 库来调度爬虫任务:
# 调度任务
job = project.jobs.run('SPIDER_NAME')
2.5 获取任务数据
任务完成后,您可以获取任务的数据:
# 获取任务数据
items = job.items.iter()
for item in items:
print(item)
3. 项目 API 使用文档
3.1 客户端 API
ScrapinghubClient 是 scrapinghub 库的核心类,用于与 Scrapinghub API 进行交互。以下是该类的主要方法:
projects.list(): 获取项目列表。get_project(project_id): 获取特定项目实例。
3.2 项目 API
Project 类代表 Scrapinghub 平台上的一个项目,以下是该类的主要方法:
jobs.run(spider_name): 调度指定爬虫的任务。jobs.list(): 获取项目中的任务列表。jobs.get(job_id): 获取特定任务实例。
3.3 任务 API
Job 类代表 Scrapinghub 平台上的一个任务,以下是该类的主要方法:
items.iter(): 获取任务的数据项。logs.iter(): 获取任务的日志。metadata.get(): 获取任务的元数据。
4. 项目安装方式
4.1 通过 pip 安装
您可以通过 pip 命令安装 scrapinghub 库,具体命令如下:
pip install scrapinghub
4.2 安装带有 MessagePack 支持的版本
如果您希望获得更好的性能,可以安装带有 MessagePack 支持的版本:
pip install scrapinghub[msgpack]
4.3 验证安装
安装完成后,您可以通过以下命令验证 scrapinghub 库是否安装成功:
python -c "import scrapinghub; print(scrapinghub.__version__)"
通过以上步骤,您应该能够成功安装并使用 scrapinghub 库与 Scrapinghub API 进行交互。希望本文档能够帮助您更好地理解和使用该项目。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134