PyTorch MPS设备对线性代数运算的支持现状与未来展望
2025-04-28 08:52:59作者:郁楠烈Hubert
背景概述
PyTorch作为当前最流行的深度学习框架之一,其硬件支持能力一直是开发者关注的焦点。近期,有用户反馈在Apple M1 Ultra芯片上运行HiDream-i1图像生成模型时遇到了线性代数运算不支持MPS(Metal Performance Shaders)设备的问题,具体表现为aten::_linalg_solve_ex.result操作符未实现。
技术解析
MPS设备支持现状
PyTorch对Apple Silicon芯片的支持通过MPS后端实现,这是一个利用Metal框架为macOS设备提供GPU加速的解决方案。目前稳定版(2.6.0)中确实存在部分高级线性代数运算尚未移植到MPS后端的情况。
问题本质
_linalg_solve_ex.result是一个用于求解线性方程组的底层操作符,在科学计算和深度学习模型中(如扩散模型中的矩阵运算)有广泛应用。该操作需要处理:
- 矩阵分解
- 数值稳定性检查
- 多结果返回(解矩阵和状态信息)
解决方案进展
PyTorch开发团队已在最新nightly版本和即将发布的2.7.0版本中通过PR #80073实现了该功能。这个改进包含:
- 完整的Metal着色器实现
- 针对Apple GPU架构的优化
- 数值精度保证机制
开发者建议
对于遇到类似问题的开发者,建议采取以下步骤:
-
版本升级 使用PyTorch nightly版本获取最新MPS支持:
pip install --pre torch -f https://download.pytorch.org/whl/nightly/cpu/torch_nightly.html -
临时解决方案 若必须使用稳定版,可将特定运算显式转移到CPU:
def mps_safe_solve(A, B): device = A.device return torch.linalg.solve(A.cpu(), B.cpu()).to(device) -
性能考量 MPS设备与CPU间的数据传输会有性能损耗,建议:
- 批量处理矩阵运算
- 减少设备间数据传输次数
- 监控内存使用情况
未来展望
PyTorch团队正在持续完善MPS后端的支持,预计将在以下方面继续改进:
- 更多BLAS/LAPACK操作的移植
- 混合精度运算支持
- 针对Apple Neural Engine的专门优化
- 更好的内存管理机制
对于Apple Silicon用户,随着PyTorch对MPS支持的不断完善,将能够更充分地发挥硬件性能优势,特别是在生成式AI等计算密集型任务上。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
369
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
674
Ascend Extension for PyTorch
Python
242
279
React Native鸿蒙化仓库
JavaScript
270
328