LearningCircuit项目中的SearXNG搜索引擎实现指南
2025-07-03 08:28:31作者:余洋婵Anita
前言
在开源项目LearningCircuit的local-deep-research中,SearXNG作为一个重要的搜索引擎组件被集成。本文将详细介绍如何在项目中实现SearXNG的配置和使用,帮助开发者快速掌握这一强大工具。
SearXNG简介
SearXNG是一个开源的元搜索引擎,它聚合了来自多个搜索引擎的结果,同时保护用户隐私。它不存储用户搜索历史,也不使用追踪技术,是注重隐私的开发者和用户的理想选择。
环境准备
在开始配置SearXNG前,需要确保系统满足以下要求:
- Python 3.6或更高版本
- pip包管理工具
- 基本的Linux命令行知识
- 适当的系统权限
安装步骤
1. 获取SearXNG源代码
首先需要从官方仓库克隆SearXNG的源代码到本地。建议使用git工具进行操作,确保能获取最新稳定版本。
2. 创建虚拟环境
为SearXNG创建独立的Python虚拟环境是个好习惯,可以避免与其他项目的依赖冲突:
python3 -m venv searxng-env
source searxng-env/bin/activate
3. 安装依赖
进入SearXNG目录后,安装必要的Python依赖包:
pip install -r requirements.txt
配置详解
SearXNG的核心配置文件是settings.yml,位于etc目录下。以下是关键配置项说明:
基本设置
server:
host: "127.0.0.1" # 绑定地址
port: 8888 # 监听端口
secret_key: "生成一个安全的密钥" # 用于会话加密
搜索引擎配置
engines:
- name: google
engine: google
shortcut: g
enabled: True
tokens: []
可以在此处添加或移除搜索引擎,调整搜索结果的来源组合。
隐私设置
general:
safe_search: 0 # 安全搜索级别
autocomplete: "" # 禁用自动完成
results_on_new_tab: True # 新标签页打开结果
运行与测试
配置完成后,可以通过以下命令启动SearXNG:
python searx/webapp.py
启动后,在浏览器中访问配置的地址和端口即可使用搜索引擎服务。
高级功能
1. 主题定制
SearXNG支持多种主题,可以通过修改settings.yml中的ui.theme选项来切换。
2. 插件系统
SearXNG提供了插件机制,可以扩展其功能。常见插件包括:
- 结果过滤
- 搜索建议
- 隐私保护增强
3. 性能优化
对于生产环境,建议:
- 使用uWSGI或Gunicorn作为应用服务器
- 配置Nginx作为反向代理
- 启用缓存提高响应速度
常见问题解决
- 端口冲突:检查并修改
settings.yml中的端口设置 - 依赖问题:确保虚拟环境中安装了所有必要依赖
- 搜索引擎不工作:检查网络连接和API密钥(如需要)
结语
通过本文的指导,开发者应该能够在LearningCircuit项目中成功配置和使用SearXNG搜索引擎。SearXNG的强大功能和隐私保护特性使其成为研究型项目的理想选择。根据实际需求,可以进一步探索其高级功能和定制选项。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.88 K
暂无简介
Dart
671
156
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
260
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
654
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1