metrica-tag 项目亮点解析
2025-06-17 20:09:11作者:柏廷章Berta
1. 项目基础介绍
metrica-tag 是由 Yandex 开发的一个开源项目,它是 Yandex Metrica 的客户端库。Yandex Metrica 是一款全球知名的网站分析工具,其客户端库在全世界范围内人气排名前 5。metrica-tag 项目的目标是提供一个可嵌入到网页中的标签(tag),用于收集网站使用情况的分析信息。
此项目基于 Node.js 构建,提供了丰富的功能模块,用户可以根据需求开启或关闭特定功能,以平衡数据收集的详细程度和脚本的大小。
2. 项目代码目录及介绍
项目的代码结构清晰,主要目录如下:
/src: 源代码目录,包含了所有的功能模块和工具代码。/__tests__: 测试代码目录,存放项目的单元测试文件。/features.json: 功能列表配置文件,定义了所有可用功能及其属性。/package.json: 项目依赖及脚本定义文件。
3. 项目亮点功能拆解
metrica-tag 的亮点功能主要包括:
- 模块化设计:项目采用模块化设计,每个功能都是一个模块,可以独立开启或关闭。
- 易于定制:用户可以根据自己的需求,通过编辑
features.json文件来定制需要的功能模块。 - 高性能:代码经过优化,默认情况下会进行压缩,以减小最终生成的脚本文件大小。
4. 项目主要技术亮点拆解
metrica-tag 的技术亮点包括:
- 基于 TypeScript:使用 TypeScript 进行开发,提供了更好的类型检查和代码维护性。
- 支持自定义事件:用户可以定义自己的事件收集逻辑,增强数据收集的灵活性。
- 丰富的 API:提供了一套丰富的 JavaScript API,方便用户进行自定义操作。
5. 与同类项目对比的亮点
相比同类网站分析工具,metrica-tag 的亮点主要体现在:
- 全球知名度:作为 Yandex Metrica 的官方库,在全球范围内有较高的知名度。
- 社区活跃:项目在 GitHub 上拥有较多的 Star 和 Fork,社区活跃度高,更新频繁。
- 功能全面:除了提供基本的网站分析功能,还支持丰富的自定义和扩展功能。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 Python开发者的macOS终极指南:VSCode安装配置全攻略 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
671
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
309
Ascend Extension for PyTorch
Python
220
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.84 K
React Native鸿蒙化仓库
JavaScript
259
322