首页
/ 在DJL中使用BGE-M3模型的稀疏向量嵌入技术

在DJL中使用BGE-M3模型的稀疏向量嵌入技术

2025-06-13 01:10:26作者:龚格成

背景介绍

BGE-M3模型是一种先进的文本嵌入模型,它能够同时生成密集向量(dense vector)和稀疏向量(sparse vector)两种形式的嵌入表示。密集向量适用于传统的向量相似度计算,而稀疏向量则更适合于基于词汇权重的检索场景。

技术挑战

在DJL(Deep Java Library)中直接使用BGE-M3模型的稀疏向量功能存在一定难度,因为DJL默认的文本嵌入转换器(TextEmbeddingTranslator)仅支持密集向量输出。这导致开发者无法直接获取模型生成的稀疏向量表示。

解决方案

1. 模型转换方法

为了在DJL中使用BGE-M3的稀疏向量功能,我们需要对原始模型进行特殊处理。以下是关键步骤:

  1. 自定义模型包装器:创建一个Python包装类,重写forward方法以同时输出密集向量和稀疏向量
  2. 模型追踪:使用PyTorch的jit.trace方法将模型转换为TorchScript格式
  3. 保存配置:生成serving.properties文件以配置DJL模型服务参数

2. Java端实现

在Java端,我们需要自定义Translator来处理稀疏向量输出:

  1. 扩展TextEmbeddingTranslator:继承基础转换器并重写processOutput方法
  2. 处理稀疏向量:从模型输出中提取稀疏向量数据
  3. 词汇映射:使用tokenizer将稀疏向量索引映射为实际词汇及其权重

实现细节

Python端模型转换

转换脚本的核心是创建一个ModelWrapper类,它封装了原始BGE-M3模型并修改了forward方法,使其同时输出密集向量和稀疏向量。转换后的模型保留了原始tokenizer,确保词汇映射的一致性。

Java端Translator实现

自定义Translator需要处理以下关键点:

  1. 从模型输出NDList中分离密集向量和稀疏向量
  2. 将稀疏向量的索引转换为词汇权重字典
  3. 实现适当的归一化处理(如需要)

性能考虑

虽然Rust引擎在理论上具有性能优势,但在实际使用中,PyTorch引擎与Rust引擎的性能差异并不显著。更重要的是确保模型转换和Translator实现的正确性。

未来展望

DJL社区正在考虑将稀疏向量支持纳入标准文本嵌入转换器中,这将大大简化BGE-M3等模型的使用流程。开发者可以关注相关进展,以便在未来版本中获得开箱即用的支持。

总结

通过自定义模型转换和Translator实现,开发者可以在DJL中充分利用BGE-M3模型的稀疏向量功能。这种方法虽然需要一定的技术投入,但为特定场景下的文本检索任务提供了更多可能性。随着DJL生态的不断完善,这类高级功能的集成将会变得更加简便。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8