在DJL中使用BGE-M3模型的稀疏向量嵌入技术
2025-06-13 23:13:14作者:龚格成
背景介绍
BGE-M3模型是一种先进的文本嵌入模型,它能够同时生成密集向量(dense vector)和稀疏向量(sparse vector)两种形式的嵌入表示。密集向量适用于传统的向量相似度计算,而稀疏向量则更适合于基于词汇权重的检索场景。
技术挑战
在DJL(Deep Java Library)中直接使用BGE-M3模型的稀疏向量功能存在一定难度,因为DJL默认的文本嵌入转换器(TextEmbeddingTranslator)仅支持密集向量输出。这导致开发者无法直接获取模型生成的稀疏向量表示。
解决方案
1. 模型转换方法
为了在DJL中使用BGE-M3的稀疏向量功能,我们需要对原始模型进行特殊处理。以下是关键步骤:
- 自定义模型包装器:创建一个Python包装类,重写forward方法以同时输出密集向量和稀疏向量
- 模型追踪:使用PyTorch的jit.trace方法将模型转换为TorchScript格式
- 保存配置:生成serving.properties文件以配置DJL模型服务参数
2. Java端实现
在Java端,我们需要自定义Translator来处理稀疏向量输出:
- 扩展TextEmbeddingTranslator:继承基础转换器并重写processOutput方法
- 处理稀疏向量:从模型输出中提取稀疏向量数据
- 词汇映射:使用tokenizer将稀疏向量索引映射为实际词汇及其权重
实现细节
Python端模型转换
转换脚本的核心是创建一个ModelWrapper类,它封装了原始BGE-M3模型并修改了forward方法,使其同时输出密集向量和稀疏向量。转换后的模型保留了原始tokenizer,确保词汇映射的一致性。
Java端Translator实现
自定义Translator需要处理以下关键点:
- 从模型输出NDList中分离密集向量和稀疏向量
- 将稀疏向量的索引转换为词汇权重字典
- 实现适当的归一化处理(如需要)
性能考虑
虽然Rust引擎在理论上具有性能优势,但在实际使用中,PyTorch引擎与Rust引擎的性能差异并不显著。更重要的是确保模型转换和Translator实现的正确性。
未来展望
DJL社区正在考虑将稀疏向量支持纳入标准文本嵌入转换器中,这将大大简化BGE-M3等模型的使用流程。开发者可以关注相关进展,以便在未来版本中获得开箱即用的支持。
总结
通过自定义模型转换和Translator实现,开发者可以在DJL中充分利用BGE-M3模型的稀疏向量功能。这种方法虽然需要一定的技术投入,但为特定场景下的文本检索任务提供了更多可能性。随着DJL生态的不断完善,这类高级功能的集成将会变得更加简便。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.25 K
暂无简介
Dart
619
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
261
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
619
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
790
76