在DJL中使用BGE-M3模型的稀疏向量嵌入技术
2025-06-13 18:28:31作者:龚格成
背景介绍
BGE-M3模型是一种先进的文本嵌入模型,它能够同时生成密集向量(dense vector)和稀疏向量(sparse vector)两种形式的嵌入表示。密集向量适用于传统的向量相似度计算,而稀疏向量则更适合于基于词汇权重的检索场景。
技术挑战
在DJL(Deep Java Library)中直接使用BGE-M3模型的稀疏向量功能存在一定难度,因为DJL默认的文本嵌入转换器(TextEmbeddingTranslator)仅支持密集向量输出。这导致开发者无法直接获取模型生成的稀疏向量表示。
解决方案
1. 模型转换方法
为了在DJL中使用BGE-M3的稀疏向量功能,我们需要对原始模型进行特殊处理。以下是关键步骤:
- 自定义模型包装器:创建一个Python包装类,重写forward方法以同时输出密集向量和稀疏向量
- 模型追踪:使用PyTorch的jit.trace方法将模型转换为TorchScript格式
- 保存配置:生成serving.properties文件以配置DJL模型服务参数
2. Java端实现
在Java端,我们需要自定义Translator来处理稀疏向量输出:
- 扩展TextEmbeddingTranslator:继承基础转换器并重写processOutput方法
- 处理稀疏向量:从模型输出中提取稀疏向量数据
- 词汇映射:使用tokenizer将稀疏向量索引映射为实际词汇及其权重
实现细节
Python端模型转换
转换脚本的核心是创建一个ModelWrapper类,它封装了原始BGE-M3模型并修改了forward方法,使其同时输出密集向量和稀疏向量。转换后的模型保留了原始tokenizer,确保词汇映射的一致性。
Java端Translator实现
自定义Translator需要处理以下关键点:
- 从模型输出NDList中分离密集向量和稀疏向量
- 将稀疏向量的索引转换为词汇权重字典
- 实现适当的归一化处理(如需要)
性能考虑
虽然Rust引擎在理论上具有性能优势,但在实际使用中,PyTorch引擎与Rust引擎的性能差异并不显著。更重要的是确保模型转换和Translator实现的正确性。
未来展望
DJL社区正在考虑将稀疏向量支持纳入标准文本嵌入转换器中,这将大大简化BGE-M3等模型的使用流程。开发者可以关注相关进展,以便在未来版本中获得开箱即用的支持。
总结
通过自定义模型转换和Translator实现,开发者可以在DJL中充分利用BGE-M3模型的稀疏向量功能。这种方法虽然需要一定的技术投入,但为特定场景下的文本检索任务提供了更多可能性。随着DJL生态的不断完善,这类高级功能的集成将会变得更加简便。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217