在DJL中使用BGE-M3模型的稀疏向量嵌入技术
2025-06-13 08:32:31作者:龚格成
背景介绍
BGE-M3模型是一种先进的文本嵌入模型,它能够同时生成密集向量(dense vector)和稀疏向量(sparse vector)两种形式的嵌入表示。密集向量适用于传统的向量相似度计算,而稀疏向量则更适合于基于词汇权重的检索场景。
技术挑战
在DJL(Deep Java Library)中直接使用BGE-M3模型的稀疏向量功能存在一定难度,因为DJL默认的文本嵌入转换器(TextEmbeddingTranslator)仅支持密集向量输出。这导致开发者无法直接获取模型生成的稀疏向量表示。
解决方案
1. 模型转换方法
为了在DJL中使用BGE-M3的稀疏向量功能,我们需要对原始模型进行特殊处理。以下是关键步骤:
- 自定义模型包装器:创建一个Python包装类,重写forward方法以同时输出密集向量和稀疏向量
- 模型追踪:使用PyTorch的jit.trace方法将模型转换为TorchScript格式
- 保存配置:生成serving.properties文件以配置DJL模型服务参数
2. Java端实现
在Java端,我们需要自定义Translator来处理稀疏向量输出:
- 扩展TextEmbeddingTranslator:继承基础转换器并重写processOutput方法
- 处理稀疏向量:从模型输出中提取稀疏向量数据
- 词汇映射:使用tokenizer将稀疏向量索引映射为实际词汇及其权重
实现细节
Python端模型转换
转换脚本的核心是创建一个ModelWrapper类,它封装了原始BGE-M3模型并修改了forward方法,使其同时输出密集向量和稀疏向量。转换后的模型保留了原始tokenizer,确保词汇映射的一致性。
Java端Translator实现
自定义Translator需要处理以下关键点:
- 从模型输出NDList中分离密集向量和稀疏向量
- 将稀疏向量的索引转换为词汇权重字典
- 实现适当的归一化处理(如需要)
性能考虑
虽然Rust引擎在理论上具有性能优势,但在实际使用中,PyTorch引擎与Rust引擎的性能差异并不显著。更重要的是确保模型转换和Translator实现的正确性。
未来展望
DJL社区正在考虑将稀疏向量支持纳入标准文本嵌入转换器中,这将大大简化BGE-M3等模型的使用流程。开发者可以关注相关进展,以便在未来版本中获得开箱即用的支持。
总结
通过自定义模型转换和Translator实现,开发者可以在DJL中充分利用BGE-M3模型的稀疏向量功能。这种方法虽然需要一定的技术投入,但为特定场景下的文本检索任务提供了更多可能性。随着DJL生态的不断完善,这类高级功能的集成将会变得更加简便。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
344
412
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
605
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
182
暂无简介
Dart
777
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896