Qwen2.5-VL模型图像坐标输出问题解析与解决方案
2025-05-23 07:10:59作者:谭伦延
在计算机视觉任务中,目标检测的坐标输出准确性直接影响着后续应用的效果。近期在使用Qwen2.5-VL模型进行图像标注时,开发者们发现了一个值得注意的现象:模型输出的边界框坐标在不同尺寸的图像上表现不一致。
问题现象
当使用Qwen2.5-VL模型进行目标检测时,开发者观察到:
- 对于尺寸为407×663的图像,模型输出的绝对坐标能够准确对应到原始图像中的目标位置
- 而对于1080×1920等较大尺寸的图像,输出的坐标则出现了明显的偏移
这种不一致性给实际应用带来了困扰,特别是在需要精确定位的场景下。
问题根源分析
经过深入探究,发现这一现象与Qwen2.5-VL模型的图像预处理机制密切相关:
- 默认尺寸限制:模型内部设定了默认的
min_pixels和max_pixels参数,其中max_pixels默认为1280×28×28(约1000×1000像素) - 自动调整机制:当输入图像尺寸超过这个限制时,模型会自动进行resize操作以适配内部处理要求
- 坐标映射关系:模型输出的绝对坐标是基于调整后的图像尺寸计算的,而非原始图像尺寸
技术原理详解
Qwen2.5-VL模型采用了一种智能的图像尺寸调整策略:
- 28的倍数要求:模型要求输入图像的尺寸最好是28的倍数,这与模型架构中的某些设计有关
- 保持长宽比:在调整尺寸时,模型会保持原始图像的长宽比不变
- 两种调整方式:
- 定义
min_pixels和max_pixels范围,在此范围内保持长宽比进行调整 - 直接指定
resized_height和resized_width,这些值会被自动调整为最接近的28的倍数
- 定义
解决方案
针对这一问题,开发者可以采取以下几种解决方案:
方案一:预处理阶段调整
- 手动调整输入尺寸:在将图像输入模型前,先将其调整为接近1:1的比例
- 控制图像像素范围:确保输入图像的像素数在模型默认的
min_pixels和max_pixels范围内
方案二:后处理阶段修正
- 获取调整后尺寸:了解模型内部对图像的实际调整尺寸
- 坐标映射转换:将模型输出的坐标按比例映射回原始图像尺寸
方案三:参数定制
- 修改默认参数:根据实际需求调整模型的
min_pixels和max_pixels设置 - 精确指定尺寸:直接设置
resized_height和resized_width参数
最佳实践建议
- 统一输入标准:对于需要精确坐标输出的应用,建议统一输入图像的尺寸标准
- 测试验证:在实际应用中,应对不同尺寸的图像进行充分测试,验证坐标输出的准确性
- 文档参考:详细阅读模型的技术文档,了解其图像处理的具体要求
总结
Qwen2.5-VL模型的坐标输出问题本质上是由其内部的图像预处理机制引起的。理解这一机制后,开发者可以通过适当的预处理或后处理方法获得准确的坐标输出。这一案例也提醒我们,在使用任何视觉模型时,都需要充分了解其输入输出规范,才能确保在实际应用中获得预期的效果。
对于需要高精度定位的应用场景,建议开发者建立完整的坐标转换流程,或者考虑使用专门为目标检测优化的模型架构,以获得更稳定可靠的检测结果。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C050
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Python开发者的macOS终极指南:VSCode安装配置全攻略 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
440
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
819
391
Ascend Extension for PyTorch
Python
248
285
React Native鸿蒙化仓库
JavaScript
275
329
暂无简介
Dart
701
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
134
49
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
555
110