Qwen2.5-VL模型图像坐标输出问题解析与解决方案
2025-05-23 06:48:43作者:谭伦延
在计算机视觉任务中,目标检测的坐标输出准确性直接影响着后续应用的效果。近期在使用Qwen2.5-VL模型进行图像标注时,开发者们发现了一个值得注意的现象:模型输出的边界框坐标在不同尺寸的图像上表现不一致。
问题现象
当使用Qwen2.5-VL模型进行目标检测时,开发者观察到:
- 对于尺寸为407×663的图像,模型输出的绝对坐标能够准确对应到原始图像中的目标位置
- 而对于1080×1920等较大尺寸的图像,输出的坐标则出现了明显的偏移
这种不一致性给实际应用带来了困扰,特别是在需要精确定位的场景下。
问题根源分析
经过深入探究,发现这一现象与Qwen2.5-VL模型的图像预处理机制密切相关:
- 默认尺寸限制:模型内部设定了默认的
min_pixels和max_pixels参数,其中max_pixels默认为1280×28×28(约1000×1000像素) - 自动调整机制:当输入图像尺寸超过这个限制时,模型会自动进行resize操作以适配内部处理要求
- 坐标映射关系:模型输出的绝对坐标是基于调整后的图像尺寸计算的,而非原始图像尺寸
技术原理详解
Qwen2.5-VL模型采用了一种智能的图像尺寸调整策略:
- 28的倍数要求:模型要求输入图像的尺寸最好是28的倍数,这与模型架构中的某些设计有关
- 保持长宽比:在调整尺寸时,模型会保持原始图像的长宽比不变
- 两种调整方式:
- 定义
min_pixels和max_pixels范围,在此范围内保持长宽比进行调整 - 直接指定
resized_height和resized_width,这些值会被自动调整为最接近的28的倍数
- 定义
解决方案
针对这一问题,开发者可以采取以下几种解决方案:
方案一:预处理阶段调整
- 手动调整输入尺寸:在将图像输入模型前,先将其调整为接近1:1的比例
- 控制图像像素范围:确保输入图像的像素数在模型默认的
min_pixels和max_pixels范围内
方案二:后处理阶段修正
- 获取调整后尺寸:了解模型内部对图像的实际调整尺寸
- 坐标映射转换:将模型输出的坐标按比例映射回原始图像尺寸
方案三:参数定制
- 修改默认参数:根据实际需求调整模型的
min_pixels和max_pixels设置 - 精确指定尺寸:直接设置
resized_height和resized_width参数
最佳实践建议
- 统一输入标准:对于需要精确坐标输出的应用,建议统一输入图像的尺寸标准
- 测试验证:在实际应用中,应对不同尺寸的图像进行充分测试,验证坐标输出的准确性
- 文档参考:详细阅读模型的技术文档,了解其图像处理的具体要求
总结
Qwen2.5-VL模型的坐标输出问题本质上是由其内部的图像预处理机制引起的。理解这一机制后,开发者可以通过适当的预处理或后处理方法获得准确的坐标输出。这一案例也提醒我们,在使用任何视觉模型时,都需要充分了解其输入输出规范,才能确保在实际应用中获得预期的效果。
对于需要高精度定位的应用场景,建议开发者建立完整的坐标转换流程,或者考虑使用专门为目标检测优化的模型架构,以获得更稳定可靠的检测结果。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
24
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
268
2.54 K
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
434
Ascend Extension for PyTorch
Python
100
126
暂无简介
Dart
558
124
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
57
11
用于管理和运行HarmonyOS Issue解决方案Demo集锦。
ArkTS
13
23
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
605
仓颉编译器源码及 cjdb 调试工具。
C++
117
93
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1