《Amazon SageMaker Feature Store 开源项目启动与配置教程》
2025-05-14 13:21:00作者:房伟宁
1. 项目的目录结构及介绍
该开源项目为 Amazon SageMaker Feature Store 的端到端工作坊。项目的目录结构如下:
amazon-sagemaker-feature-store-end-to-end-workshop/
├── notebooks/ # Jupyter 笔记本目录
│ ├── data_preparation.ipynb # 数据准备
│ ├── feature_engineering.ipynb # 特征工程
│ ├── model_training.ipynb # 模型训练
│ └── model_deployment.ipynb # 模型部署
├── data/ # 数据集目录
│ ├── training_data.csv # 训练数据
│ └── test_data.csv # 测试数据
├── feature_store/ # 特征存储相关代码和配置
│ ├── feature_group.yaml # 特征组配置文件
│ └── feature_group_processor.py # 特征组处理脚本
├── models/ # 模型目录
│ └── model_server.py # 模型服务器代码
├── requirements.txt # 项目依赖
└── workshop_setup.sh # 工作坊环境设置脚本
以下是各个目录的简要介绍:
notebooks/:包含项目中的 Jupyter 笔记本,涵盖数据准备、特征工程、模型训练和模型部署等步骤。data/:存放项目的训练数据和测试数据。feature_store/:包含特征存储的配置文件和特征组处理脚本。models/:包含模型服务器代码,用于部署和提供模型服务。requirements.txt:列出项目所需的 Python 包依赖。workshop_setup.sh:脚本用于设置工作坊环境。
2. 项目的启动文件介绍
项目的启动主要是通过执行 workshop_setup.sh 脚本来完成的。该脚本的主要功能如下:
- 设置 Python 环境和所需的依赖包。
- 配置 AWS Sagemaker 环境。
- 准备数据集和特征存储的必要配置。
在命令行中执行以下命令来启动项目:
./workshop_setup.sh
执行此脚本后,项目环境将准备好,可以开始运行 Jupyter 笔记本中的各个步骤。
3. 项目的配置文件介绍
项目的配置主要集中在 feature_store/feature_group.yaml 文件中,此文件定义了特征组的配置。以下是配置文件的主要内容:
FeatureGroup:
FeatureGroupName: "your-feature-group-name"
RecordCreationTimeFeatureName: "record CreationTime"
EventTimeFeatureName: "event_time"
FeatureDefinitions:
- FeatureName: "feature1"
FeatureType: "String"
Description: "Feature 1 Description"
- FeatureName: "feature2"
FeatureType: "Integer"
Description: "Feature 2 Description"
# ... 更多特征定义
在这个文件中,您需要指定特征组的名称、记录创建时间的特征名称、事件时间的特征名称以及各个特征的名称、类型和描述。
确保正确配置此文件,因为它是特征存储中数据模型的重要组成部分。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134