ZenML项目0.73.0版本发布:支持自托管多租户与实验管理增强
项目概述
ZenML是一个开源的机器学习运维(MLOps)框架,旨在为机器学习项目提供端到端的管道编排和自动化能力。作为一个可扩展的平台,ZenML允许数据科学家和工程师轻松构建、部署和管理机器学习工作流,同时保持对不同工具和基础设施的兼容性。
核心更新:自托管ZenML Pro多租户支持
本次0.73.0版本最重要的更新是引入了对非托管ZenML Pro租户的支持,使企业能够在自己的基础设施上部署ZenML Pro控制平面。这一功能通过以下技术实现:
-
Helm部署选项扩展:提供了更灵活的Helm chart配置选项,特别是针对迁移pod的内存资源配置现在可以独立设置,为不同规模的部署提供了更好的资源控制。
-
安全认证机制:实现了安全的租户认证流程,确保自托管实例能够安全地加入ZenML Pro生态系统。
-
CSRF防护:新增了跨站请求伪造(CSRF)令牌支持,增强了Web界面的安全性。
-
跨域授权流程:完善了跨多个域的授权流程,为分布式部署场景提供了更好的支持。
这些改进使得企业能够构建真正自托管、多域的ZenML Pro安装环境,满足严格的数据驻留和合规要求。
实验管理与跟踪增强
在机器学习实验管理方面,0.73.0版本带来了两项重要改进:
-
Vertex AI实验管理器集成:新增了对Google Vertex AI实验管理器的原生支持,用户现在可以直接将ZenML管道与Vertex AI的实验管理功能集成,利用Google Cloud的强大基础设施来跟踪和比较机器学习实验。
-
实验比较工具:引入了全新的实验比较功能,用户可以通过直观的界面对比不同实验的运行结果、参数和指标。这一功能大大简化了模型迭代过程中的决策分析。
工作流编排改进
针对工作流编排,本次更新包含以下优化:
-
Airflow KubernetesPodOperator支持:更新了对Airflow KubernetesPodOperator的支持,兼容了新的导入路径,确保与最新版Airflow的兼容性。
-
资源报告增强:改进了资源使用情况报告机制,现在能够自动进行单位转换,提供更友好的资源使用视图。
通知与日志优化
在系统可观察性方面:
-
Slack告警器更新:全面改进了Slack告警器的实现,提供更可靠的通知机制和更丰富的消息内容。
-
日志过滤调整:从MLflow日志抑制列表中移除了gluon相关条目,优化了日志输出。
开发者体验改进
针对开发者体验的优化包括:
-
非ASCII字符支持:通过新增环境变量配置,现在支持在JSON转储中包含非ASCII字符,更好地适应国际化需求。
-
文档更新:完善了Kubeflow Pipelines和大型语言模型(LLM)相关的文档内容。
技术价值与影响
0.73.0版本的发布标志着ZenML在企业级部署能力上的重大进步。自托管多租户支持使得ZenML Pro能够在更严格的企业IT环境中部署,满足金融、医疗等高度监管行业的需求。同时,实验管理功能的增强进一步巩固了ZenML作为端到端MLOps平台的地位,为数据科学团队提供了更强大的工具链。
对于正在评估或已经采用ZenML的团队来说,这一版本提供了更灵活的部署选项和更完善的功能集,特别是在混合云和多云场景下,能够更好地平衡灵活性与控制力需求。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00