Pluto.jl项目中GPU内存泄漏问题的分析与解决
2025-06-09 17:13:12作者:柯茵沙
问题背景
在Pluto.jl交互式笔记本环境中运行基于Lux.jl框架的深度学习模型训练时,用户遇到了一个特殊的GPU内存泄漏问题。具体表现为当训练进行到约50个epoch时,系统会抛出Malt.TerminatedWorkerException()错误,导致训练中断。值得注意的是,相同的代码在常规Julia REPL环境中运行时却能正常完成训练,不会出现内存问题。
环境配置
问题出现在以下技术栈组合中:
- CUDA 5.3.3
- Lux.jl 0.5.42
- LuxCUDA.jl 0.3.2
- Pluto.jl最新版本
模型规模为140万参数,输入图像尺寸为128×128×96,运行在NVIDIA A100 GPU上。
问题排查过程
初步分析
最初怀疑问题可能与日志记录中的字符串插值有关,因为字符串插值会引入try-catch块,可能导致GPU内存无法及时释放。然而,移除所有字符串插值后问题依然存在。
关键发现
通过对比实验发现:
- 在Pluto.jl默认配置下会出现内存泄漏
- 使用
Pluto.run(capture_stdout=false)参数运行时问题消失 - 直接使用Julia REPL运行相同代码没有问题
深入调查
Pluto.jl开发者fonsp指导进行了更深入的测试:
- 尝试使用
workspace_use_distributed_stdlib=true参数,但问题依然存在 - 测试了禁用日志和stdout捕获的特殊分支版本,问题得到解决
- 尝试在REPL中模拟Pluto的stdout捕获机制,却无法复现问题
根本原因
经过多次测试和分析,确定问题与Pluto.jl的标准输出捕获机制(capture_stdout)有关。当启用stdout捕获时,GPU内存管理会出现异常,导致内存泄漏。具体机制尚不完全清楚,但可能与以下因素有关:
- Pluto的stdout捕获会创建额外的IO缓冲区和异步任务
- 这些额外资源可能与CUDA的内存管理机制产生冲突
- 在长时间运行(如50个epoch)后,内存泄漏积累到临界点导致崩溃
解决方案
目前确认有效的解决方案有两种:
- 禁用stdout捕获:启动Pluto时添加
capture_stdout=false参数
Pluto.run(launch_browser=false, host="0.0.0.0", capture_stdout=false)
- 使用特殊分支版本:安装并运行禁用日志和stdout捕获的Pluto分支版本
] add Pluto#disable-logger-and-stdout
技术启示
这个案例揭示了交互式笔记本环境与GPU计算之间可能存在的微妙交互问题。开发者在以下场景应特别注意:
- 长时间运行的GPU计算任务
- 使用复杂IO重定向机制的环境
- 需要精确内存管理的场景
建议在遇到类似问题时:
- 首先尝试简化环境配置
- 对比不同执行环境的表现
- 逐步隔离可能的问题组件
后续工作
虽然当前有可行的解决方案,但问题的根本原因仍需进一步研究。理想情况下,Pluto.jl和Lux.jl/CUDA.jl的开发者可以合作,找出stdout捕获与GPU内存管理之间的具体冲突点,实现更优雅的解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1