Ash项目中自定义表达式在直接使用与计算包装时的行为差异分析
2025-07-08 12:00:33作者:沈韬淼Beryl
问题背景
在使用Ash框架开发Elixir应用时,开发人员发现了一个关于自定义表达式行为不一致的问题。具体表现为:当直接在读取操作中使用Ash.CustomExpression时,与将其包装在计算中再使用时,生成的SQL查询存在显著差异。
问题现象
开发人员定义了一个名为trigram_word_similarity的自定义表达式,用于实现PostgreSQL的word_similarity函数功能。该表达式在两种使用场景下表现不同:
- 直接使用场景:在读取操作的过滤条件中直接调用自定义表达式时,生成的SQL查询缺少预期的过滤条件部分。
- 计算包装场景:将自定义表达式包装在计算中,然后在过滤条件中使用该计算时,生成的SQL查询包含完整的过滤条件。
技术细节分析
自定义表达式实现
自定义表达式模块实现了Ash.CustomExpression行为,专门为PostgreSQL数据层定义了如何将Elixir表达式转换为SQL片段:
def expression(data_layer, [left, right]) when data_layer in [AshPostgres.DataLayer] do
{:ok, expr(fragment("word_similarity(?, ?)", ^left, ^right))}
end
两种使用方式对比
- 直接使用方式:
read :by_directly_matching_name do
filter expr(trigram_word_similarity(name, ^arg(:term)) > 0.2)
end
- 计算包装方式:
calculate :calc_word_similarity, :float, expr(trigram_word_similarity(name, ^arg(:term)))
read :by_indirectly_matching_name do
filter expr(calc_word_similarity(term: ^arg(:term)) > 0.2)
end
问题根源
通过调试分析发现,当自定义表达式直接用于布尔表达式时,Ash的过滤器处理流程(Ash.Filter.hydrate_refs/2)会过早地对表达式进行求值优化,导致SQL片段被转换为Elixir值而非保留为SQL表达式。而在计算包装场景下,由于计算属性的特殊处理流程,表达式能够正确地保持为SQL片段直到查询生成阶段。
解决方案
开发人员发现了一种有效的变通方案:将布尔比较逻辑直接内置于自定义表达式中:
def expression(data_layer, [left, right, min_threshold]) do
{:ok, expr(fragment("word_similarity(?, ?)", ^left, ^right) > ^min_threshold)}
end
这种方式确保了比较操作能够正确地转换为SQL条件,无论表达式是直接使用还是通过计算包装使用。
最佳实践建议
- 对于需要在SQL层面实现的复杂条件,建议将比较逻辑直接包含在自定义表达式中。
- 当自定义表达式需要与外部值比较时,考虑将比较值作为表达式的参数传入。
- 在开发过程中,使用调试工具验证表达式在不同使用场景下的最终SQL输出。
- 对于关键业务逻辑的查询条件,建议编写测试用例验证生成的SQL是否符合预期。
总结
这个问题揭示了Ash框架中表达式处理流程的一个微妙之处。理解这种差异有助于开发人员更有效地利用Ash的自定义表达式功能,特别是在需要与数据库特定功能集成时。通过将比较逻辑内置于表达式中,可以确保查询生成的一致性和正确性。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
182
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
274
94
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.41 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1