Determined AI 长时实验认证失效问题分析与解决方案
问题背景
在机器学习平台Determined AI的使用过程中,用户报告了一个关键性问题:当实验运行时间超过一周后,系统会出现认证失效的错误,导致实验意外终止。这个问题严重影响了长期训练任务的稳定性,特别是在进行大规模模型训练时。
错误现象
系统日志显示,实验在运行约一周后会出现以下两类典型错误:
-
训练过程中的认证失效:当尝试报告训练进度时,系统抛出
UnauthenticatedException
异常,提示用户需要重新登录。 -
自动重试失败:在系统尝试自动恢复实验时,同样因为认证问题无法下载任务上下文目录,导致恢复失败。
根本原因分析
经过技术团队调查,发现这个问题与系统的会话管理机制有关:
-
会话过期时间:系统默认设置了7天的会话有效期,这是导致一周后认证失效的直接原因。
-
长期运行任务的特殊性:机器学习训练任务往往需要持续运行数周甚至数月,现有的会话管理机制没有充分考虑这种使用场景。
-
认证令牌刷新机制缺失:系统缺乏在长时间运行任务中自动刷新认证令牌的机制。
技术解决方案
Determined AI团队通过以下方式解决了这个问题:
-
延长会话有效期:将会话的有效期从7天延长到更合理的时间范围。
-
实现令牌自动刷新:在任务运行期间,系统会自动检测并刷新认证令牌,确保长期运行的实验不会因认证问题中断。
-
优化错误处理:改进了认证失败时的错误处理逻辑,提供更清晰的错误信息和恢复建议。
最佳实践建议
对于使用Determined AI进行长期训练的用户,建议:
-
及时升级:确保使用0.37.0或更高版本,该版本已包含此问题的修复。
-
监控任务状态:即使问题已修复,仍建议定期检查长期运行任务的状态。
-
合理设置检查点:配置适当的检查点间隔,以便在意外情况下能够快速恢复训练进度。
总结
Determined AI团队快速响应并解决了这个影响长期实验稳定性的关键问题。通过优化会话管理机制,确保了系统能够可靠地支持长时间运行的机器学习训练任务。这一改进显著提升了平台的稳定性和用户体验,特别是对于那些需要进行大规模模型训练的研究人员和工程师。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0287Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









