Determined AI 长时实验认证失效问题分析与解决方案
问题背景
在机器学习平台Determined AI的使用过程中,用户报告了一个关键性问题:当实验运行时间超过一周后,系统会出现认证失效的错误,导致实验意外终止。这个问题严重影响了长期训练任务的稳定性,特别是在进行大规模模型训练时。
错误现象
系统日志显示,实验在运行约一周后会出现以下两类典型错误:
-
训练过程中的认证失效:当尝试报告训练进度时,系统抛出
UnauthenticatedException异常,提示用户需要重新登录。 -
自动重试失败:在系统尝试自动恢复实验时,同样因为认证问题无法下载任务上下文目录,导致恢复失败。
根本原因分析
经过技术团队调查,发现这个问题与系统的会话管理机制有关:
-
会话过期时间:系统默认设置了7天的会话有效期,这是导致一周后认证失效的直接原因。
-
长期运行任务的特殊性:机器学习训练任务往往需要持续运行数周甚至数月,现有的会话管理机制没有充分考虑这种使用场景。
-
认证令牌刷新机制缺失:系统缺乏在长时间运行任务中自动刷新认证令牌的机制。
技术解决方案
Determined AI团队通过以下方式解决了这个问题:
-
延长会话有效期:将会话的有效期从7天延长到更合理的时间范围。
-
实现令牌自动刷新:在任务运行期间,系统会自动检测并刷新认证令牌,确保长期运行的实验不会因认证问题中断。
-
优化错误处理:改进了认证失败时的错误处理逻辑,提供更清晰的错误信息和恢复建议。
最佳实践建议
对于使用Determined AI进行长期训练的用户,建议:
-
及时升级:确保使用0.37.0或更高版本,该版本已包含此问题的修复。
-
监控任务状态:即使问题已修复,仍建议定期检查长期运行任务的状态。
-
合理设置检查点:配置适当的检查点间隔,以便在意外情况下能够快速恢复训练进度。
总结
Determined AI团队快速响应并解决了这个影响长期实验稳定性的关键问题。通过优化会话管理机制,确保了系统能够可靠地支持长时间运行的机器学习训练任务。这一改进显著提升了平台的稳定性和用户体验,特别是对于那些需要进行大规模模型训练的研究人员和工程师。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00