LMMs-Eval项目中的Vinoground评估结果不一致问题分析
2025-07-01 23:07:13作者:韦蓉瑛
问题背景
在LMMs-Eval项目中,用户在对LLaVA-OV-7B模型进行Vinoground基准测试时,发现评估结果与原始论文报告的数据存在明显差异。具体表现为各项指标均低于预期值,特别是在视频理解任务上的表现尤为突出。
问题表现
用户使用标准评估命令对模型进行测试后,获得的评估结果如下:
- 动作识别:文本35.80%,视频17.51%,组8.95%
- 整体表现:文本41.20%,视频18.60%,组9.20%
- 视角理解:文本67.47%,视频25.30%,组19.28%
- 周期性理解:文本32.43%,视频16.22%,组8.11%
- 空间理解:文本26.21%,视频14.56%,组3.88%
- 交互理解:文本34.25%,视频15.07%,组4.11%
- 上下文理解:文本34.92%,视频17.46%,组7.94%
- 对象理解:文本36.25%,视频16.88%,组4.38%
这些结果明显低于论文中报告的性能指标,表明评估过程中可能存在某些配置或实现上的问题。
问题根源
经过项目维护团队的深入调查,发现问题出在评估流程的实现细节上。具体而言,评估脚本在处理视频任务时,未能正确应用模型对视频内容的理解能力,导致视频相关任务的评估分数偏低。
解决方案
项目团队迅速响应,提出了修复方案并提交了相应的代码修改(Pull Request #354)。该修复主要涉及以下几个方面:
- 修正了视频特征提取的处理逻辑
- 优化了模型对视频帧序列的理解方式
- 调整了评估指标的计算方法
修复效果
修复后的评估结果与原始论文报告的数据基本一致,验证了修复方案的有效性。新的评估结果显示,模型在各项任务上的表现均达到了预期水平,特别是在视频理解任务上有了显著提升。
技术启示
这一问题的解决过程为多模态模型评估提供了重要经验:
- 评估流程的每个细节都可能影响最终结果,需要特别关注
- 视频理解任务的评估需要特殊的处理方式
- 开源社区的快速响应和协作是解决问题的关键
对于使用LMMs-Eval项目的开发者,建议在评估视频相关任务时,确保使用最新版本的评估脚本,并仔细检查评估配置参数,以获得准确可靠的评估结果。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134