LMMs-Eval项目中的Vinoground评估结果不一致问题分析
2025-07-01 19:21:52作者:韦蓉瑛
问题背景
在LMMs-Eval项目中,用户在对LLaVA-OV-7B模型进行Vinoground基准测试时,发现评估结果与原始论文报告的数据存在明显差异。具体表现为各项指标均低于预期值,特别是在视频理解任务上的表现尤为突出。
问题表现
用户使用标准评估命令对模型进行测试后,获得的评估结果如下:
- 动作识别:文本35.80%,视频17.51%,组8.95%
- 整体表现:文本41.20%,视频18.60%,组9.20%
- 视角理解:文本67.47%,视频25.30%,组19.28%
- 周期性理解:文本32.43%,视频16.22%,组8.11%
- 空间理解:文本26.21%,视频14.56%,组3.88%
- 交互理解:文本34.25%,视频15.07%,组4.11%
- 上下文理解:文本34.92%,视频17.46%,组7.94%
- 对象理解:文本36.25%,视频16.88%,组4.38%
这些结果明显低于论文中报告的性能指标,表明评估过程中可能存在某些配置或实现上的问题。
问题根源
经过项目维护团队的深入调查,发现问题出在评估流程的实现细节上。具体而言,评估脚本在处理视频任务时,未能正确应用模型对视频内容的理解能力,导致视频相关任务的评估分数偏低。
解决方案
项目团队迅速响应,提出了修复方案并提交了相应的代码修改(Pull Request #354)。该修复主要涉及以下几个方面:
- 修正了视频特征提取的处理逻辑
- 优化了模型对视频帧序列的理解方式
- 调整了评估指标的计算方法
修复效果
修复后的评估结果与原始论文报告的数据基本一致,验证了修复方案的有效性。新的评估结果显示,模型在各项任务上的表现均达到了预期水平,特别是在视频理解任务上有了显著提升。
技术启示
这一问题的解决过程为多模态模型评估提供了重要经验:
- 评估流程的每个细节都可能影响最终结果,需要特别关注
- 视频理解任务的评估需要特殊的处理方式
- 开源社区的快速响应和协作是解决问题的关键
对于使用LMMs-Eval项目的开发者,建议在评估视频相关任务时,确保使用最新版本的评估脚本,并仔细检查评估配置参数,以获得准确可靠的评估结果。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137