首页
/ PyTorch Geometric中DMoNPooling模块的损失函数解析

PyTorch Geometric中DMoNPooling模块的损失函数解析

2025-05-09 01:30:47作者:傅爽业Veleda

概述

在PyTorch Geometric图神经网络库中,DMoNPooling是一个重要的图池化层实现,用于图数据的层次化表示学习。该模块基于论文《Structural Deep Clustering Network》提出的方法,通过可学习的分配矩阵实现图数据的粗化。本文将深入分析该模块的损失函数设计,澄清当前实现与原始论文的差异。

核心问题

DMoNPooling模块当前实现了三个损失函数:

  1. 谱损失(Spectral Loss)
  2. 正交性损失(Orthogonality Loss)
  3. 聚类损失(Cluster Loss)

然而,根据原始论文的技术描述,该模块本应只包含两个损失函数:

  1. 模块度损失(Modularity Loss)
  2. 聚类损失(Cluster Loss)

损失函数详解

模块度损失(正确实现)

模块度损失是DMoN方法的核心,其数学表达式为:

L_s = - (1/2m) * Tr(S^T B S)

其中:

  • S ∈ ℝ^(B×N×C) 是学习到的分配矩阵
  • B 是模块度矩阵
  • m 是图中边的数量

该损失函数鼓励学习到的聚类分配保持原始图的结构特性。

聚类损失(正确实现)

聚类损失作为正则化项,确保分配矩阵的平衡性:

L_c = (√C/n) * ||∑_i C_i^T||_F - 1

其中:

  • C 是聚类数量
  • n 是节点数量

正交性损失(争议部分)

当前实现包含的正交性损失:

L_o = || (S^T S)/||S^T S||_F - I_C/√C ||_F

这一损失实际上来源于MinCutPool方法,而非原始DMoN论文。它强制分配矩阵的列向量正交,可能带来额外的计算开销和潜在的优化冲突。

实现建议

对于希望严格遵循原始论文的用户,建议:

  1. 在训练时忽略正交性损失
  2. 仅将模块度损失和聚类损失相加作为总辅助目标

这种简化不仅更符合理论设计,也可能提高训练效率,因为正交性约束可能与模块度优化目标存在一定冲突。

总结

PyTorch Geometric中的DMoNPooling实现虽然包含了额外的正交性损失,但其核心的模块度损失和聚类损失计算是正确的。用户可以根据实际需求选择是否使用全部三个损失函数。理解这一差异有助于研究人员更准确地复现论文结果或进行方法改进。

对于大多数应用场景,建议优先考虑原始论文的两损失设计,这通常能获得更好的理论一致性和实际性能。库维护者已注意到这一问题,并在示例代码中做出了相应调整。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
143
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
927
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8