OpenCompass评估框架中MMLU数据集汇总错误分析与解决方案
问题背景
在使用OpenCompass评估框架对Qwen1.5-1.8B模型进行MMLU数据集评估时,研究人员遇到了一个典型的评估结果汇总错误。该问题表现为评估过程能够正常执行并生成中间结果,但在最终结果汇总阶段出现异常。
错误现象分析
从错误日志中可以观察到两个关键错误信息:
-
KeyError: 系统在尝试访问'lukaemon_mmlu_abstract_algebra'键时失败,表明评估结果中缺少某些预期子集的评分数据。
-
AttributeError: 当尝试对浮点数调用items()方法时失败,说明结果数据结构与预期不符,某些评分数据以简单浮点数形式存在,而非预期的字典结构。
根本原因
经过深入分析,该问题主要由以下因素导致:
-
汇总器配置不当:使用了不兼容的leaderboard.py汇总器,该汇总器预期特定的数据结构格式,而实际评估结果与之不匹配。
-
评估流程分离:MMLU数据集的评估分为推理(inference)和评分(evaluation)两个阶段,虽然这两个阶段能顺利完成,但汇总阶段对中间结果的数据结构有严格要求。
解决方案
针对这一问题,建议采取以下解决方案:
-
移除自定义汇总器:不使用
--summarizer leaderboard.py
参数,让系统使用默认的汇总器处理结果。默认汇总器能更好地适应各种评估任务的数据结构。 -
检查评估配置:确认MMLU数据集的所有子集都正确加载并参与评估,避免因部分子集缺失导致汇总错误。
-
验证数据结构:在评估完成后、汇总前,可以检查生成的中间结果文件,确保评分数据以正确的字典结构存储。
技术建议
对于使用OpenCompass进行大规模评估的研究人员,建议:
-
分阶段验证:先在小规模数据集上测试完整的评估流程,确认无误后再扩展到全部数据集。
-
结果检查:评估完成后,检查生成的
results
和eval_details
目录中的文件,确保所有预期输出都存在且格式正确。 -
日志监控:密切关注评估过程中的日志输出,特别是任务分区和评分阶段的统计信息。
总结
OpenCompass作为大型语言模型评估框架,其评估流程涉及多个复杂环节。MMLU这类多领域知识评估数据集由于其子集众多,在结果汇总时容易出现数据结构不匹配的问题。通过使用默认汇总器并确保评估配置正确,可以有效避免此类问题,获得准确的模型性能评估结果。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++045Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0288Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









