OpenCompass评估框架中MMLU数据集汇总错误分析与解决方案
问题背景
在使用OpenCompass评估框架对Qwen1.5-1.8B模型进行MMLU数据集评估时,研究人员遇到了一个典型的评估结果汇总错误。该问题表现为评估过程能够正常执行并生成中间结果,但在最终结果汇总阶段出现异常。
错误现象分析
从错误日志中可以观察到两个关键错误信息:
-
KeyError: 系统在尝试访问'lukaemon_mmlu_abstract_algebra'键时失败,表明评估结果中缺少某些预期子集的评分数据。
-
AttributeError: 当尝试对浮点数调用items()方法时失败,说明结果数据结构与预期不符,某些评分数据以简单浮点数形式存在,而非预期的字典结构。
根本原因
经过深入分析,该问题主要由以下因素导致:
-
汇总器配置不当:使用了不兼容的leaderboard.py汇总器,该汇总器预期特定的数据结构格式,而实际评估结果与之不匹配。
-
评估流程分离:MMLU数据集的评估分为推理(inference)和评分(evaluation)两个阶段,虽然这两个阶段能顺利完成,但汇总阶段对中间结果的数据结构有严格要求。
解决方案
针对这一问题,建议采取以下解决方案:
-
移除自定义汇总器:不使用
--summarizer leaderboard.py参数,让系统使用默认的汇总器处理结果。默认汇总器能更好地适应各种评估任务的数据结构。 -
检查评估配置:确认MMLU数据集的所有子集都正确加载并参与评估,避免因部分子集缺失导致汇总错误。
-
验证数据结构:在评估完成后、汇总前,可以检查生成的中间结果文件,确保评分数据以正确的字典结构存储。
技术建议
对于使用OpenCompass进行大规模评估的研究人员,建议:
-
分阶段验证:先在小规模数据集上测试完整的评估流程,确认无误后再扩展到全部数据集。
-
结果检查:评估完成后,检查生成的
results和eval_details目录中的文件,确保所有预期输出都存在且格式正确。 -
日志监控:密切关注评估过程中的日志输出,特别是任务分区和评分阶段的统计信息。
总结
OpenCompass作为大型语言模型评估框架,其评估流程涉及多个复杂环节。MMLU这类多领域知识评估数据集由于其子集众多,在结果汇总时容易出现数据结构不匹配的问题。通过使用默认汇总器并确保评估配置正确,可以有效避免此类问题,获得准确的模型性能评估结果。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00