ZLPhotoBrowser中AVAsset.tracks(withMediaType:)性能问题分析与优化
问题背景
在iOS多媒体开发中,处理视频资源时经常需要获取视频轨道信息。ZLPhotoBrowser作为一款功能强大的图片选择器,在预览视频时使用了AVFoundation框架中的tracks(withMediaType:)
方法来获取视频轨道信息。然而,随着iOS系统的更新,这个方法在iOS 18上出现了明显的性能问题。
问题分析
AVAsset.tracks(withMediaType:)
是AVFoundation框架中用于获取特定类型媒体轨道的方法。在iOS 15之前,这是获取视频轨道信息的常用方式。然而,随着系统更新,这个方法在性能上出现了以下问题:
- 同步加载问题:该方法会同步加载轨道信息,可能导致主线程阻塞
- 资源消耗大:对于某些视频格式,解析轨道信息需要较多计算资源
- 兼容性问题:在iOS 15及更高版本中,苹果已标记该方法为不推荐使用
技术细节
在ZLPhotoBrowser的ZLNetVideoPreviewCell
中,原始代码使用如下方式获取视频轨道:
if let videoTrack = item.asset.tracks(withMediaType: .video).first {
// 处理视频轨道信息
}
这种方式在iOS 18上会导致明显的卡顿,特别是在处理多个视频或高分辨率视频时。卡顿的主要原因包括:
- 主线程阻塞:同步加载轨道信息会阻塞UI线程
- 资源加载延迟:AVAsset可能需要先加载媒体数据才能获取轨道信息
- 变换计算开销:获取naturalSize和preferredTransform需要额外计算
优化方案
针对这个问题,我们可以采用以下几种优化策略:
1. 使用异步加载方式
苹果推荐使用loadValuesAsynchronously(forKeys:completionHandler:)
异步加载资源属性:
asset.loadValuesAsynchronously(forKeys: ["tracks"]) {
DispatchQueue.main.async {
if asset.statusOfValue(forKey: "tracks", error: nil) == .loaded {
let tracks = asset.tracks(withMediaType: .video)
// 处理轨道信息
}
}
}
2. 使用推荐的替代API
iOS 15引入了新的AVAssetTrack
查询API,性能更优:
let videoTracks = try await asset.load(.tracks)
let videoTrack = videoTracks.first(where: { $0.mediaType == .video })
3. 缓存计算结果
对于重复访问的视频资源,可以缓存轨道信息计算结果:
struct VideoTrackCache {
static let shared = VideoTrackCache()
private var cache = [URL: CGRect]()
mutating func getFrame(for url: URL, completion: @escaping (CGRect) -> Void) {
if let frame = cache[url] {
completion(frame)
return
}
// 异步计算并缓存结果
}
}
实现建议
针对ZLPhotoBrowser的具体场景,建议修改calculatePlayerFrame(for:)
方法的实现:
- 将同步调用改为异步方式
- 添加默认帧大小作为fallback
- 考虑使用新的Swift并发模型(如async/await)
- 添加错误处理和超时机制
示例改进代码:
private func calculatePlayerFrame(for item: AVPlayerItem, completion: @escaping (CGRect) -> Void) {
let asset = item.asset
asset.loadValuesAsynchronously(forKeys: ["tracks"]) { [weak self] in
guard let self = self else { return }
DispatchQueue.main.async {
if asset.statusOfValue(forKey: "tracks", error: nil) == .loaded,
let videoTrack = asset.tracks(withMediaType: .video).first {
let size = videoTrack.naturalSize.applying(videoTrack.preferredTransform)
let videoRect = self.calculateFrame(with: size)
completion(videoRect)
} else {
completion(self.bounds)
}
}
}
}
private func calculateFrame(with videoSize: CGSize) -> CGRect {
let videoWHRatio = abs(videoSize.width) / abs(videoSize.height)
let cellWHRatio = zl.width / zl.height
if videoWHRatio > cellWHRatio {
let videoH = zl.width / videoWHRatio
return CGRect(x: 0, y: (zl.height - videoH) / 2, width: zl.width, height: videoH)
} else {
let videoW = zl.height * videoWHRatio
return CGRect(x: (zl.width - videoW) / 2, y: 0, width: videoW, height: zl.height)
}
}
兼容性考虑
在实现优化方案时,需要考虑不同iOS版本的兼容性:
- 对于iOS 15+设备,优先使用新的异步API
- 对于旧版系统,保持原有逻辑但改为异步执行
- 添加适当的API可用性检查
性能测试建议
实施优化后,建议进行以下测试:
- 主线程响应时间测试
- 内存使用情况监控
- 多视频连续预览的流畅度测试
- 不同分辨率和格式视频的处理测试
总结
在ZLPhotoBrowser中处理视频预览时,应当避免在主线程同步调用tracks(withMediaType:)
方法。通过采用异步加载、使用新API和合理缓存等优化策略,可以显著提升视频预览的流畅度和用户体验。随着iOS系统的更新,开发者需要及时跟进AVFoundation框架的最新变化,采用推荐的最佳实践来保证应用的性能和稳定性。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~057CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









